基于卷积神经网络的多光谱无人机图像电力线检测与分割

Manjit Hota, Sudarshan Rao B, U. Kumar
{"title":"基于卷积神经网络的多光谱无人机图像电力线检测与分割","authors":"Manjit Hota, Sudarshan Rao B, U. Kumar","doi":"10.1109/InGARSS48198.2020.9358967","DOIUrl":null,"url":null,"abstract":"In this paper, detection, and segmentation of power line in Unmanned Aerial Vehicles (UAV) multi-spectral images using convolutional neural network is proposed. Initially, the multi-spectral images captured from UAV were calibrated and pre-processed, following which they were fed into deep CNN for semantic segmentation to perform a binary classification; each pixel was assigned either of the two classes - \"power line\" or \"no power line\". Semantic segmentation was performed with different networks such as U-Net, SegNet and PSPNet. Qualitative (visual inspection) and quantitative analysis of the results showed that U-Net outperformed other networks with an overall accuracy of around 99% with a competitive execution latency, making it useful for real time analysis of power lines from UAV data.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"41 1","pages":"154-157"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power Lines Detection and Segmentation In Multi-Spectral Uav Images Using Convolutional Neural Network\",\"authors\":\"Manjit Hota, Sudarshan Rao B, U. Kumar\",\"doi\":\"10.1109/InGARSS48198.2020.9358967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, detection, and segmentation of power line in Unmanned Aerial Vehicles (UAV) multi-spectral images using convolutional neural network is proposed. Initially, the multi-spectral images captured from UAV were calibrated and pre-processed, following which they were fed into deep CNN for semantic segmentation to perform a binary classification; each pixel was assigned either of the two classes - \\\"power line\\\" or \\\"no power line\\\". Semantic segmentation was performed with different networks such as U-Net, SegNet and PSPNet. Qualitative (visual inspection) and quantitative analysis of the results showed that U-Net outperformed other networks with an overall accuracy of around 99% with a competitive execution latency, making it useful for real time analysis of power lines from UAV data.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"41 1\",\"pages\":\"154-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于卷积神经网络的无人机多光谱图像电力线检测与分割方法。首先,对无人机捕获的多光谱图像进行校准和预处理,然后将其输入深度CNN进行语义分割,进行二值分类;每个像素被指定为两类中的一种——“电源线”或“无电源线”。使用U-Net、SegNet和PSPNet等不同的网络进行语义分割。定性(目视检查)和定量分析结果表明,U-Net优于其他网络,总体精度约为99%,执行延迟具有竞争力,可用于从无人机数据实时分析电力线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Lines Detection and Segmentation In Multi-Spectral Uav Images Using Convolutional Neural Network
In this paper, detection, and segmentation of power line in Unmanned Aerial Vehicles (UAV) multi-spectral images using convolutional neural network is proposed. Initially, the multi-spectral images captured from UAV were calibrated and pre-processed, following which they were fed into deep CNN for semantic segmentation to perform a binary classification; each pixel was assigned either of the two classes - "power line" or "no power line". Semantic segmentation was performed with different networks such as U-Net, SegNet and PSPNet. Qualitative (visual inspection) and quantitative analysis of the results showed that U-Net outperformed other networks with an overall accuracy of around 99% with a competitive execution latency, making it useful for real time analysis of power lines from UAV data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1