{"title":"maxout网络的区域数目和Minkowski和的顶点数目的尖锐界限","authors":"Guido Montúfar, Yue Ren, Leon Zhang","doi":"10.1137/21m1413699","DOIUrl":null,"url":null,"abstract":"We present results on the number of linear regions of the functions that can be represented by artificial feedforward neural networks with maxout units. A rank-k maxout unit is a function computing the maximum of $k$ linear functions. For networks with a single layer of maxout units, the linear regions correspond to the upper vertices of a Minkowski sum of polytopes. We obtain face counting formulas in terms of the intersection posets of tropical hypersurfaces or the number of upper faces of partial Minkowski sums, along with explicit sharp upper bounds for the number of regions for any input dimension, any number of units, and any ranks, in the cases with and without biases. Based on these results we also obtain asymptotically sharp upper bounds for networks with multiple layers.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums\",\"authors\":\"Guido Montúfar, Yue Ren, Leon Zhang\",\"doi\":\"10.1137/21m1413699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present results on the number of linear regions of the functions that can be represented by artificial feedforward neural networks with maxout units. A rank-k maxout unit is a function computing the maximum of $k$ linear functions. For networks with a single layer of maxout units, the linear regions correspond to the upper vertices of a Minkowski sum of polytopes. We obtain face counting formulas in terms of the intersection posets of tropical hypersurfaces or the number of upper faces of partial Minkowski sums, along with explicit sharp upper bounds for the number of regions for any input dimension, any number of units, and any ranks, in the cases with and without biases. Based on these results we also obtain asymptotically sharp upper bounds for networks with multiple layers.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1413699\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m1413699","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
We present results on the number of linear regions of the functions that can be represented by artificial feedforward neural networks with maxout units. A rank-k maxout unit is a function computing the maximum of $k$ linear functions. For networks with a single layer of maxout units, the linear regions correspond to the upper vertices of a Minkowski sum of polytopes. We obtain face counting formulas in terms of the intersection posets of tropical hypersurfaces or the number of upper faces of partial Minkowski sums, along with explicit sharp upper bounds for the number of regions for any input dimension, any number of units, and any ranks, in the cases with and without biases. Based on these results we also obtain asymptotically sharp upper bounds for networks with multiple layers.