分子掺杂聚合物中的电荷输运:相关无序模型的检验

L. Schein, A. Tyutnev
{"title":"分子掺杂聚合物中的电荷输运:相关无序模型的检验","authors":"L. Schein, A. Tyutnev","doi":"10.1021/JP112290T","DOIUrl":null,"url":null,"abstract":"The correlated disorder model (CDM) has been proposed as a theory of charge transport in molecularly doped polymers (MDPs). Recently a test of the CDM was proposed: it was predicted that the dipolar disorder energy can be obtained from the slope of the log of the mobility versus square root of the electric field (the Poole-Frenkel or PF slope). We find that the dipolar disorder energy obtained from the experimental PF slopes are almost always larger than the theoretical predictions, especially for MDPs made from dopants with low dipole moments. In addition, the theory relates the dipolar disorder energy to the temperature T0 at which the electric field dependence of the mobility vanishes. We find that the observed T0 does appear to increase as the dipolar disorder increases but is in quantitative agreement (within 25 K) with the theoretical predictions for only a limited set of the measurements. We conclude that it appears that the CDM needs further development to be consistent with charge transport in or...","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"77 1","pages":"6939-6947"},"PeriodicalIF":2.7810,"publicationDate":"2011-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Charge Transport in Molecularly Doped Polymers: Tests of the Correlated Disorder Model\",\"authors\":\"L. Schein, A. Tyutnev\",\"doi\":\"10.1021/JP112290T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The correlated disorder model (CDM) has been proposed as a theory of charge transport in molecularly doped polymers (MDPs). Recently a test of the CDM was proposed: it was predicted that the dipolar disorder energy can be obtained from the slope of the log of the mobility versus square root of the electric field (the Poole-Frenkel or PF slope). We find that the dipolar disorder energy obtained from the experimental PF slopes are almost always larger than the theoretical predictions, especially for MDPs made from dopants with low dipole moments. In addition, the theory relates the dipolar disorder energy to the temperature T0 at which the electric field dependence of the mobility vanishes. We find that the observed T0 does appear to increase as the dipolar disorder increases but is in quantitative agreement (within 25 K) with the theoretical predictions for only a limited set of the measurements. We conclude that it appears that the CDM needs further development to be consistent with charge transport in or...\",\"PeriodicalId\":58,\"journal\":{\"name\":\"The Journal of Physical Chemistry \",\"volume\":\"77 1\",\"pages\":\"6939-6947\"},\"PeriodicalIF\":2.7810,\"publicationDate\":\"2011-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry \",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/JP112290T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/JP112290T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

相关无序模型(CDM)被提出作为分子掺杂聚合物(MDPs)中电荷输运的一种理论。最近提出了对CDM的一种检验:预测偶极无序能可以由迁移率的对数相对于电场的平方根的斜率(Poole-Frenkel或PF斜率)得到。我们发现,从实验的PF斜率得到的偶极无序能几乎总是大于理论预测,特别是对于由低偶极矩掺杂剂制成的mdp。此外,该理论将偶极无序能与温度T0联系起来,在此温度下,对迁移率的电场依赖性消失。我们发现,观测到的T0确实随着偶极无序度的增加而增加,但仅在有限的一组测量中与理论预测在定量上一致(在25 K以内)。我们的结论是,似乎CDM需要进一步发展,以符合或…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge Transport in Molecularly Doped Polymers: Tests of the Correlated Disorder Model
The correlated disorder model (CDM) has been proposed as a theory of charge transport in molecularly doped polymers (MDPs). Recently a test of the CDM was proposed: it was predicted that the dipolar disorder energy can be obtained from the slope of the log of the mobility versus square root of the electric field (the Poole-Frenkel or PF slope). We find that the dipolar disorder energy obtained from the experimental PF slopes are almost always larger than the theoretical predictions, especially for MDPs made from dopants with low dipole moments. In addition, the theory relates the dipolar disorder energy to the temperature T0 at which the electric field dependence of the mobility vanishes. We find that the observed T0 does appear to increase as the dipolar disorder increases but is in quantitative agreement (within 25 K) with the theoretical predictions for only a limited set of the measurements. We conclude that it appears that the CDM needs further development to be consistent with charge transport in or...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitin-specific protease 47 is associated with vascular calcification in chronic kidney disease by regulating osteogenic transdifferentiation of vascular smooth muscle cells. A universal flu vaccine on the horizon. Mapping the hideouts and habits of bacteria in tumors. Prenatal treatment for Pompe's disease. Holding back progression of kidney disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1