边缘计算架构下基于多源监测和深度卷积神经网络的变电站设备健康状态全景评估方法

Zhu-xing Ma, Li-shuo Zhang, Hao Gu, Zi-zhong Xin, Zhe Kang, Zhao-lei Wang
{"title":"边缘计算架构下基于多源监测和深度卷积神经网络的变电站设备健康状态全景评估方法","authors":"Zhu-xing Ma, Li-shuo Zhang, Hao Gu, Zi-zhong Xin, Zhe Kang, Zhao-lei Wang","doi":"10.1155/2023/9194712","DOIUrl":null,"url":null,"abstract":"In view of the low efficiency of the traditional manual evaluation method of substation equipment status under the background of complex environment, a panoramic evaluation method of substation equipment health status based on multisource monitoring and deep convolution neural network under edge computing architecture is proposed. Firstly, a panoramic sensing system for substation equipment is built based on edge computing, and an edge computing server is deployed in the substation to process the massive data obtained from multisource monitoring nearby. Then, the improved YOLOv4 network is used to detect the equipment state in the substation, in which the Squeeze-and-Excitation attention module and deep separable convolution are used to optimize the YOLOv4 network. Finally, based on the status image of substation equipment, the health status of equipment is evaluated on the panoramic platform of substation combined with the characteristics of multisource data, and four states are divided according to the evaluation criteria. Based on the selected dataset, the experimental analysis of the proposed method is carried out. The results show that the index values of accuracy, recall, and mean precision are 91.53%, 93.07%, and 92.28%, respectively. The overall performance is better than other methods and has certain application value.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"11 1","pages":"9194712:1-9194712:12"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panoramic Assessment Method of Substation Equipment Health Status Based on Multisource Monitoring and Deep Convolution Neural Network under Edge Computing Architecture\",\"authors\":\"Zhu-xing Ma, Li-shuo Zhang, Hao Gu, Zi-zhong Xin, Zhe Kang, Zhao-lei Wang\",\"doi\":\"10.1155/2023/9194712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the low efficiency of the traditional manual evaluation method of substation equipment status under the background of complex environment, a panoramic evaluation method of substation equipment health status based on multisource monitoring and deep convolution neural network under edge computing architecture is proposed. Firstly, a panoramic sensing system for substation equipment is built based on edge computing, and an edge computing server is deployed in the substation to process the massive data obtained from multisource monitoring nearby. Then, the improved YOLOv4 network is used to detect the equipment state in the substation, in which the Squeeze-and-Excitation attention module and deep separable convolution are used to optimize the YOLOv4 network. Finally, based on the status image of substation equipment, the health status of equipment is evaluated on the panoramic platform of substation combined with the characteristics of multisource data, and four states are divided according to the evaluation criteria. Based on the selected dataset, the experimental analysis of the proposed method is carried out. The results show that the index values of accuracy, recall, and mean precision are 91.53%, 93.07%, and 92.28%, respectively. The overall performance is better than other methods and has certain application value.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":\"11 1\",\"pages\":\"9194712:1-9194712:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9194712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9194712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对复杂环境下传统的人工变电站设备状态评估方法效率较低的问题,提出了一种边缘计算架构下基于多源监测和深度卷积神经网络的变电站设备健康状态全景评估方法。首先,构建基于边缘计算的变电站设备全景传感系统,在变电站内部署边缘计算服务器,对附近多源监控获得的海量数据进行处理。然后,利用改进后的YOLOv4网络对变电站内的设备状态进行检测,其中利用挤激注意模块和深度可分卷积对YOLOv4网络进行优化。最后,以变电站设备状态图像为基础,结合多源数据的特点,在变电站全景平台上对设备健康状态进行评价,并根据评价标准将设备健康状态划分为四种状态。在选定数据集的基础上,对所提出的方法进行了实验分析。结果表明,准确率、查全率和平均查准率分别为91.53%、93.07%和92.28%。综合性能优于其他方法,具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Panoramic Assessment Method of Substation Equipment Health Status Based on Multisource Monitoring and Deep Convolution Neural Network under Edge Computing Architecture
In view of the low efficiency of the traditional manual evaluation method of substation equipment status under the background of complex environment, a panoramic evaluation method of substation equipment health status based on multisource monitoring and deep convolution neural network under edge computing architecture is proposed. Firstly, a panoramic sensing system for substation equipment is built based on edge computing, and an edge computing server is deployed in the substation to process the massive data obtained from multisource monitoring nearby. Then, the improved YOLOv4 network is used to detect the equipment state in the substation, in which the Squeeze-and-Excitation attention module and deep separable convolution are used to optimize the YOLOv4 network. Finally, based on the status image of substation equipment, the health status of equipment is evaluated on the panoramic platform of substation combined with the characteristics of multisource data, and four states are divided according to the evaluation criteria. Based on the selected dataset, the experimental analysis of the proposed method is carried out. The results show that the index values of accuracy, recall, and mean precision are 91.53%, 93.07%, and 92.28%, respectively. The overall performance is better than other methods and has certain application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor Array System Based on Electronic Nose to Detect Borax in Meatballs with Artificial Neural Network Comprehensive Overview of Modern Controllers for Synchronous Reluctance Motor Regular Vehicle Spatial Distribution Estimation Based on Machine Learning Optimized Model Torque Prediction Control Strategy for BLDCM Torque Error and Speed Error Reduction System Low Noise Amplifier at 60 GHz Using Low Loss On-Chip Inductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1