S. K. Mandal, B. Bhattacharyya, S. Mukherjee, S. Karmakar
{"title":"旋耕机叶片优化设计,提高使用寿命","authors":"S. K. Mandal, B. Bhattacharyya, S. Mukherjee, S. Karmakar","doi":"10.37255/jme.v16i4pp115-123","DOIUrl":null,"url":null,"abstract":"A rotary tiller or rotavator is active tillage equipment used to prepare farmland for sowing seeds, weeding, mixing manure and fertiliser into the soil, crushing soil blocks, etc. Compared with conventional farming, the advantages of this equipment are rapid seedbed preparation and reduced draught. Nowadays, the utilisation rate of rotary tillers has increased. However, the blades are the key component that engages with the soil in the rotary tiller. These blades interact with the soil differently from ordinary ploughs and bear impact loads and high frictional forces, which eventually generate unbalanced and uneven forces on the entire rotary tiller. As a result, the blade faces significant wear. Therefore, it is necessary to optimise the design of the blades to minimise wear and enhance the service life. In this research work, design optimisation was carried out towards improving service life.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DESIGN OPTIMISATION OF ROTARY TILLER BLADE TOWARDS SERVICE LIFE ENHANCEMENT\",\"authors\":\"S. K. Mandal, B. Bhattacharyya, S. Mukherjee, S. Karmakar\",\"doi\":\"10.37255/jme.v16i4pp115-123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rotary tiller or rotavator is active tillage equipment used to prepare farmland for sowing seeds, weeding, mixing manure and fertiliser into the soil, crushing soil blocks, etc. Compared with conventional farming, the advantages of this equipment are rapid seedbed preparation and reduced draught. Nowadays, the utilisation rate of rotary tillers has increased. However, the blades are the key component that engages with the soil in the rotary tiller. These blades interact with the soil differently from ordinary ploughs and bear impact loads and high frictional forces, which eventually generate unbalanced and uneven forces on the entire rotary tiller. As a result, the blade faces significant wear. Therefore, it is necessary to optimise the design of the blades to minimise wear and enhance the service life. In this research work, design optimisation was carried out towards improving service life.\",\"PeriodicalId\":38895,\"journal\":{\"name\":\"Academic Journal of Manufacturing Engineering\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37255/jme.v16i4pp115-123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v16i4pp115-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
DESIGN OPTIMISATION OF ROTARY TILLER BLADE TOWARDS SERVICE LIFE ENHANCEMENT
A rotary tiller or rotavator is active tillage equipment used to prepare farmland for sowing seeds, weeding, mixing manure and fertiliser into the soil, crushing soil blocks, etc. Compared with conventional farming, the advantages of this equipment are rapid seedbed preparation and reduced draught. Nowadays, the utilisation rate of rotary tillers has increased. However, the blades are the key component that engages with the soil in the rotary tiller. These blades interact with the soil differently from ordinary ploughs and bear impact loads and high frictional forces, which eventually generate unbalanced and uneven forces on the entire rotary tiller. As a result, the blade faces significant wear. Therefore, it is necessary to optimise the design of the blades to minimise wear and enhance the service life. In this research work, design optimisation was carried out towards improving service life.