{"title":"拓扑模糊的笛卡尔闭子范畴","authors":"M. Akbarpour, Ghasem Mirhosseinkhani","doi":"10.29252/AS.2019.1335","DOIUrl":null,"url":null,"abstract":"A category $mathbf{C}$ is called Cartesian closed provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$ of all topological fuzzes is both complete and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this category.","PeriodicalId":36596,"journal":{"name":"Algebraic Structures and their Applications","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartesian closed subcategories of topological fuzzes\",\"authors\":\"M. Akbarpour, Ghasem Mirhosseinkhani\",\"doi\":\"10.29252/AS.2019.1335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A category $mathbf{C}$ is called Cartesian closed provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$ of all topological fuzzes is both complete and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this category.\",\"PeriodicalId\":36596,\"journal\":{\"name\":\"Algebraic Structures and their Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Structures and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/AS.2019.1335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Structures and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/AS.2019.1335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Cartesian closed subcategories of topological fuzzes
A category $mathbf{C}$ is called Cartesian closed provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$ of all topological fuzzes is both complete and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this category.