Y. Liu, N. Rameshan, Enric Monte-Moreno, Vladimir Vlassov, Leandro Navarro-Moldes
{"title":"ProRenaTa:扩展分布式存储系统的主动和被动调优","authors":"Y. Liu, N. Rameshan, Enric Monte-Moreno, Vladimir Vlassov, Leandro Navarro-Moldes","doi":"10.1109/CCGrid.2015.26","DOIUrl":null,"url":null,"abstract":"Provisioning tasteful services in the Cloud that guarantees high quality of service with reduced hosting cost is challenging to achieve. There are two typical auto-scaling approaches: predictive and reactive. A prediction based controller leaves the system enough time to react to workload changes while a feedback based controller scales the system with better accuracy. In this paper, we show the limitations of using a proactive or reactive approach in isolation to scale a tasteful system and the overhead involved. To overcome the limitations, we implement an elasticity controller, ProRenaTa, which combines both reactive and proactive approaches to leverage on their respective advantages and also implements a data migration model to handle the scaling overhead. We show that the combination of reactive and proactive approaches outperforms the state of the art approaches. Our experiments with Wikipedia workload trace indicate that ProRenaTa guarantees a high level of SLA commitments while improving the overall resource utilization.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"108 1","pages":"453-464"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"ProRenaTa: Proactive and Reactive Tuning to Scale a Distributed Storage System\",\"authors\":\"Y. Liu, N. Rameshan, Enric Monte-Moreno, Vladimir Vlassov, Leandro Navarro-Moldes\",\"doi\":\"10.1109/CCGrid.2015.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Provisioning tasteful services in the Cloud that guarantees high quality of service with reduced hosting cost is challenging to achieve. There are two typical auto-scaling approaches: predictive and reactive. A prediction based controller leaves the system enough time to react to workload changes while a feedback based controller scales the system with better accuracy. In this paper, we show the limitations of using a proactive or reactive approach in isolation to scale a tasteful system and the overhead involved. To overcome the limitations, we implement an elasticity controller, ProRenaTa, which combines both reactive and proactive approaches to leverage on their respective advantages and also implements a data migration model to handle the scaling overhead. We show that the combination of reactive and proactive approaches outperforms the state of the art approaches. Our experiments with Wikipedia workload trace indicate that ProRenaTa guarantees a high level of SLA commitments while improving the overall resource utilization.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"108 1\",\"pages\":\"453-464\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ProRenaTa: Proactive and Reactive Tuning to Scale a Distributed Storage System
Provisioning tasteful services in the Cloud that guarantees high quality of service with reduced hosting cost is challenging to achieve. There are two typical auto-scaling approaches: predictive and reactive. A prediction based controller leaves the system enough time to react to workload changes while a feedback based controller scales the system with better accuracy. In this paper, we show the limitations of using a proactive or reactive approach in isolation to scale a tasteful system and the overhead involved. To overcome the limitations, we implement an elasticity controller, ProRenaTa, which combines both reactive and proactive approaches to leverage on their respective advantages and also implements a data migration model to handle the scaling overhead. We show that the combination of reactive and proactive approaches outperforms the state of the art approaches. Our experiments with Wikipedia workload trace indicate that ProRenaTa guarantees a high level of SLA commitments while improving the overall resource utilization.