走向可信赖的外包深度神经网络

Q1 Computer Science IEEE Cloud Computing Pub Date : 2021-10-01 DOI:10.1109/IEEECloudSummit52029.2021.00021
Louay Ahmad, Boxiang Dong, B. Samanthula, Ryan Yang Wang, Bill Hui Li
{"title":"走向可信赖的外包深度神经网络","authors":"Louay Ahmad, Boxiang Dong, B. Samanthula, Ryan Yang Wang, Bill Hui Li","doi":"10.1109/IEEECloudSummit52029.2021.00021","DOIUrl":null,"url":null,"abstract":"The rising complexity of deep neural networks has raised rigorous demands for computational hardware and deployment expertise. As an alternative, outsourcing a pre-trained model to a third party server has been increasingly prevalent. However, it creates opportunities for attackers to interfere with the prediction outcomes of the deep neural network. In this paper, we focus on integrity verification of the prediction results from outsourced deep neural models and make a thread of contributions. We propose a new attack based on steganography that enables the server to generate wrong prediction results in a command-and-control fashion. Following that, we design a homomorphic encryption-based authentication scheme to detect wrong predictions made by any attack. Our extensive experiments on benchmark datasets demonstrate the invisibility of the attack and the effectiveness of our authentication approach.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"7 1","pages":"83-88"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Trustworthy Outsourced Deep Neural Networks\",\"authors\":\"Louay Ahmad, Boxiang Dong, B. Samanthula, Ryan Yang Wang, Bill Hui Li\",\"doi\":\"10.1109/IEEECloudSummit52029.2021.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising complexity of deep neural networks has raised rigorous demands for computational hardware and deployment expertise. As an alternative, outsourcing a pre-trained model to a third party server has been increasingly prevalent. However, it creates opportunities for attackers to interfere with the prediction outcomes of the deep neural network. In this paper, we focus on integrity verification of the prediction results from outsourced deep neural models and make a thread of contributions. We propose a new attack based on steganography that enables the server to generate wrong prediction results in a command-and-control fashion. Following that, we design a homomorphic encryption-based authentication scheme to detect wrong predictions made by any attack. Our extensive experiments on benchmark datasets demonstrate the invisibility of the attack and the effectiveness of our authentication approach.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"7 1\",\"pages\":\"83-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECloudSummit52029.2021.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECloudSummit52029.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络日益复杂,对计算硬件和部署专业知识提出了严格的要求。作为一种替代方法,将预先训练好的模型外包给第三方服务器的做法越来越普遍。然而,它为攻击者干扰深度神经网络的预测结果创造了机会。在本文中,我们着重于外包深度神经模型预测结果的完整性验证,并做出一系列贡献。我们提出了一种基于隐写术的新攻击,使服务器能够以命令和控制的方式生成错误的预测结果。接下来,我们设计了一个基于同态加密的身份验证方案,以检测任何攻击所做出的错误预测。我们在基准数据集上的大量实验证明了攻击的不可见性和我们的身份验证方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Trustworthy Outsourced Deep Neural Networks
The rising complexity of deep neural networks has raised rigorous demands for computational hardware and deployment expertise. As an alternative, outsourcing a pre-trained model to a third party server has been increasingly prevalent. However, it creates opportunities for attackers to interfere with the prediction outcomes of the deep neural network. In this paper, we focus on integrity verification of the prediction results from outsourced deep neural models and make a thread of contributions. We propose a new attack based on steganography that enables the server to generate wrong prediction results in a command-and-control fashion. Following that, we design a homomorphic encryption-based authentication scheme to detect wrong predictions made by any attack. Our extensive experiments on benchmark datasets demonstrate the invisibility of the attack and the effectiveness of our authentication approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1