A. Wahab, Momal Akram, Muhammad Salman, Abdul Shakoor, Samra Tahir, Umer Farooq, Muzamil Majeed
{"title":"潜在天然生物吸附剂在单组分和双组分系统中去除铅和镉的吸附活性:表征、动力学活性和机理探索","authors":"A. Wahab, Momal Akram, Muhammad Salman, Abdul Shakoor, Samra Tahir, Umer Farooq, Muzamil Majeed","doi":"10.5004/dwt.2023.29450","DOIUrl":null,"url":null,"abstract":", and change in surface morphology by scanning electron microscopy. The point of zero charges pH pzc of xanthate-modified P. vulgaris was observed to be 7.20 which makes it appropriate for the sorp- tion of cations. The batch sorption implementation of xanthate-modified P. vulgaris includes sorbent amount, pH, linear and non-linear regression analysis, and kinetic curves. The xanthate-modified P. vulgaris adsorbed 95.65% cadmium (at pH 4.0) and 90.36% of lead (at pH 5.0) from a single aqueous system. The sorption of Pb 2+ and Cd 2+ by xanthate-modified P. vulgaris follow the linear regression of Langmuir isotherm with q max of 160.97 and 150.50 mg/L, respectively which is substantially greater than that of many other reported ones. The xanthate-modified P. vulgaris demonstrated rapid uptake capacity of Pb 2+ and Cd 2+ following the high value of correlation coefficient with pseudo-second-order kinetics. This sorption process for Pb 2+ and Cd 2+ was found to be endothermic and spontaneous. The binding capacities however reduced in the binary system. This, therefore revealed that the xanthate-modified P. vulgaris can be an encouraging biosorbent for the remediation of Pb 2+ and Cd 2+ from contaminated water.","PeriodicalId":11260,"journal":{"name":"Desalination and Water Treatment","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorptive activity of potential native biosorbent for the elimination of lead and cadmium in one and two-component system: characterization, kinetic activity, and mechanism exploration\",\"authors\":\"A. Wahab, Momal Akram, Muhammad Salman, Abdul Shakoor, Samra Tahir, Umer Farooq, Muzamil Majeed\",\"doi\":\"10.5004/dwt.2023.29450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\", and change in surface morphology by scanning electron microscopy. The point of zero charges pH pzc of xanthate-modified P. vulgaris was observed to be 7.20 which makes it appropriate for the sorp- tion of cations. The batch sorption implementation of xanthate-modified P. vulgaris includes sorbent amount, pH, linear and non-linear regression analysis, and kinetic curves. The xanthate-modified P. vulgaris adsorbed 95.65% cadmium (at pH 4.0) and 90.36% of lead (at pH 5.0) from a single aqueous system. The sorption of Pb 2+ and Cd 2+ by xanthate-modified P. vulgaris follow the linear regression of Langmuir isotherm with q max of 160.97 and 150.50 mg/L, respectively which is substantially greater than that of many other reported ones. The xanthate-modified P. vulgaris demonstrated rapid uptake capacity of Pb 2+ and Cd 2+ following the high value of correlation coefficient with pseudo-second-order kinetics. This sorption process for Pb 2+ and Cd 2+ was found to be endothermic and spontaneous. The binding capacities however reduced in the binary system. This, therefore revealed that the xanthate-modified P. vulgaris can be an encouraging biosorbent for the remediation of Pb 2+ and Cd 2+ from contaminated water.\",\"PeriodicalId\":11260,\"journal\":{\"name\":\"Desalination and Water Treatment\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination and Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5004/dwt.2023.29450\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination and Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5004/dwt.2023.29450","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Sorptive activity of potential native biosorbent for the elimination of lead and cadmium in one and two-component system: characterization, kinetic activity, and mechanism exploration
, and change in surface morphology by scanning electron microscopy. The point of zero charges pH pzc of xanthate-modified P. vulgaris was observed to be 7.20 which makes it appropriate for the sorp- tion of cations. The batch sorption implementation of xanthate-modified P. vulgaris includes sorbent amount, pH, linear and non-linear regression analysis, and kinetic curves. The xanthate-modified P. vulgaris adsorbed 95.65% cadmium (at pH 4.0) and 90.36% of lead (at pH 5.0) from a single aqueous system. The sorption of Pb 2+ and Cd 2+ by xanthate-modified P. vulgaris follow the linear regression of Langmuir isotherm with q max of 160.97 and 150.50 mg/L, respectively which is substantially greater than that of many other reported ones. The xanthate-modified P. vulgaris demonstrated rapid uptake capacity of Pb 2+ and Cd 2+ following the high value of correlation coefficient with pseudo-second-order kinetics. This sorption process for Pb 2+ and Cd 2+ was found to be endothermic and spontaneous. The binding capacities however reduced in the binary system. This, therefore revealed that the xanthate-modified P. vulgaris can be an encouraging biosorbent for the remediation of Pb 2+ and Cd 2+ from contaminated water.
期刊介绍:
The journal is dedicated to research and application of desalination technology, environment and energy considerations, integrated water management, water reuse, wastewater and related topics.