Benazir Neha, S. K. Panda, P. Sahu, Kshira Sagar Sahoo, A. Gandomi
{"title":"渗透计算的系统综述","authors":"Benazir Neha, S. K. Panda, P. Sahu, Kshira Sagar Sahoo, A. Gandomi","doi":"10.1145/3488247","DOIUrl":null,"url":null,"abstract":"Osmotic computing in association with related computing paradigms (cloud, fog, and edge) emerges as a promising solution for handling bulk of security-critical as well as latency-sensitive data generated by the digital devices. It is a growing research domain that studies deployment, migration, and optimization of applications in the form of microservices across cloud/edge infrastructure. It presents dynamically tailored microservices in technology-centric environments by exploiting edge and cloud platforms. Osmotic computing promotes digital transformation and furnishes benefits to transportation, smart cities, education, and healthcare. In this article, we present a comprehensive analysis of osmotic computing through a systematic literature review approach. To ensure high-quality review, we conduct an advanced search on numerous digital libraries to extracting related studies. The advanced search strategy identifies 99 studies, from which 29 relevant studies are selected for a thorough review. We present a summary of applications in osmotic computing build on their key features. On the basis of the observations, we outline the research challenges for the applications in this research field. Finally, we discuss the security issues resolved and unresolved in osmotic computing.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"16 1","pages":"1 - 30"},"PeriodicalIF":3.5000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Systematic Review on Osmotic Computing\",\"authors\":\"Benazir Neha, S. K. Panda, P. Sahu, Kshira Sagar Sahoo, A. Gandomi\",\"doi\":\"10.1145/3488247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osmotic computing in association with related computing paradigms (cloud, fog, and edge) emerges as a promising solution for handling bulk of security-critical as well as latency-sensitive data generated by the digital devices. It is a growing research domain that studies deployment, migration, and optimization of applications in the form of microservices across cloud/edge infrastructure. It presents dynamically tailored microservices in technology-centric environments by exploiting edge and cloud platforms. Osmotic computing promotes digital transformation and furnishes benefits to transportation, smart cities, education, and healthcare. In this article, we present a comprehensive analysis of osmotic computing through a systematic literature review approach. To ensure high-quality review, we conduct an advanced search on numerous digital libraries to extracting related studies. The advanced search strategy identifies 99 studies, from which 29 relevant studies are selected for a thorough review. We present a summary of applications in osmotic computing build on their key features. On the basis of the observations, we outline the research challenges for the applications in this research field. Finally, we discuss the security issues resolved and unresolved in osmotic computing.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"16 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3488247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Osmotic computing in association with related computing paradigms (cloud, fog, and edge) emerges as a promising solution for handling bulk of security-critical as well as latency-sensitive data generated by the digital devices. It is a growing research domain that studies deployment, migration, and optimization of applications in the form of microservices across cloud/edge infrastructure. It presents dynamically tailored microservices in technology-centric environments by exploiting edge and cloud platforms. Osmotic computing promotes digital transformation and furnishes benefits to transportation, smart cities, education, and healthcare. In this article, we present a comprehensive analysis of osmotic computing through a systematic literature review approach. To ensure high-quality review, we conduct an advanced search on numerous digital libraries to extracting related studies. The advanced search strategy identifies 99 studies, from which 29 relevant studies are selected for a thorough review. We present a summary of applications in osmotic computing build on their key features. On the basis of the observations, we outline the research challenges for the applications in this research field. Finally, we discuss the security issues resolved and unresolved in osmotic computing.