{"title":"高温锆合金在氮气、氧气和蒸汽混合物中氧化的模拟","authors":"Aleksey Pavlovich Dolgodvorov","doi":"10.26583/npe.2023.1.12","DOIUrl":null,"url":null,"abstract":"The paper presents a correlation model of high-temperature zirconium alloy oxidation in a mixture of gases (steam, nitrogen and oxygen) for the weight gain calculation of the oxidized sample. The essence of the model consists in using the linear interpolation between the kinetic constants of oxidation in pure gases to describe the oxidation kinetics in gas mixtures. The approach allows one to describe the oxygen weight gain with different contents of gases in steam, nitrogen and oxygen mixtures. The model was validated against experimental data on oxidation in an air-steam mixture in a proportion of 50% to 50% of the volume. For temperatures of 1200 °C and 1400 °C, prior to the 625th second, the deviation between the experimental data and the simulation results is not more than 18%; for 800 °C, prior to the 14th hour, the deviation between the experimental data and the simulation results is not more than 40%. Besides the air-steam mixture, the paper presents the results of the weight gain calculation using the proposed model for oxidation in an oxygen-nitrogen mixture and in a steam-oxygen mixture at 800 °C and 1400 °C.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"295 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of High-Temperature Zirconium Alloy Oxidation in a Nitrogen, Oxygen and Steam Mixture\",\"authors\":\"Aleksey Pavlovich Dolgodvorov\",\"doi\":\"10.26583/npe.2023.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a correlation model of high-temperature zirconium alloy oxidation in a mixture of gases (steam, nitrogen and oxygen) for the weight gain calculation of the oxidized sample. The essence of the model consists in using the linear interpolation between the kinetic constants of oxidation in pure gases to describe the oxidation kinetics in gas mixtures. The approach allows one to describe the oxygen weight gain with different contents of gases in steam, nitrogen and oxygen mixtures. The model was validated against experimental data on oxidation in an air-steam mixture in a proportion of 50% to 50% of the volume. For temperatures of 1200 °C and 1400 °C, prior to the 625th second, the deviation between the experimental data and the simulation results is not more than 18%; for 800 °C, prior to the 14th hour, the deviation between the experimental data and the simulation results is not more than 40%. Besides the air-steam mixture, the paper presents the results of the weight gain calculation using the proposed model for oxidation in an oxygen-nitrogen mixture and in a steam-oxygen mixture at 800 °C and 1400 °C.\",\"PeriodicalId\":37826,\"journal\":{\"name\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"volume\":\"295 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/npe.2023.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2023.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Simulation of High-Temperature Zirconium Alloy Oxidation in a Nitrogen, Oxygen and Steam Mixture
The paper presents a correlation model of high-temperature zirconium alloy oxidation in a mixture of gases (steam, nitrogen and oxygen) for the weight gain calculation of the oxidized sample. The essence of the model consists in using the linear interpolation between the kinetic constants of oxidation in pure gases to describe the oxidation kinetics in gas mixtures. The approach allows one to describe the oxygen weight gain with different contents of gases in steam, nitrogen and oxygen mixtures. The model was validated against experimental data on oxidation in an air-steam mixture in a proportion of 50% to 50% of the volume. For temperatures of 1200 °C and 1400 °C, prior to the 625th second, the deviation between the experimental data and the simulation results is not more than 18%; for 800 °C, prior to the 14th hour, the deviation between the experimental data and the simulation results is not more than 40%. Besides the air-steam mixture, the paper presents the results of the weight gain calculation using the proposed model for oxidation in an oxygen-nitrogen mixture and in a steam-oxygen mixture at 800 °C and 1400 °C.
期刊介绍:
The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.