大规模全局优化的微分反stigmergy算法

P. Korošec, Katerina Tashkova, J. Silc
{"title":"大规模全局优化的微分反stigmergy算法","authors":"P. Korošec, Katerina Tashkova, J. Silc","doi":"10.1109/CEC.2010.5586201","DOIUrl":null,"url":null,"abstract":"Ant-colony optimization (ACO) is a popular swarm intelligence metaheuristic scheme that can be applied to almost any optimization problem. In this paper, we address a performance evaluation of an ACO-based algorithm for solving large-scale global optimization problems with continuous variables, labeled Differential Ant-Stigmergy Algorithm (DASA). The DASA transforms a real-parameter optimization problem into a graph-search problem. The parameters' differences assigned to the graph vertices are used to navigate through the search space. The performance of the DASA is evaluated on the set of benchmark problems provided for CEC'2010 Special Session and Competition on Large-Scale Global Optimization.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"238 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The differential Ant-Stigmergy Algorithm for large-scale global optimization\",\"authors\":\"P. Korošec, Katerina Tashkova, J. Silc\",\"doi\":\"10.1109/CEC.2010.5586201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant-colony optimization (ACO) is a popular swarm intelligence metaheuristic scheme that can be applied to almost any optimization problem. In this paper, we address a performance evaluation of an ACO-based algorithm for solving large-scale global optimization problems with continuous variables, labeled Differential Ant-Stigmergy Algorithm (DASA). The DASA transforms a real-parameter optimization problem into a graph-search problem. The parameters' differences assigned to the graph vertices are used to navigate through the search space. The performance of the DASA is evaluated on the set of benchmark problems provided for CEC'2010 Special Session and Competition on Large-Scale Global Optimization.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"238 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

蚁群优化(蚁群优化)是一种流行的群体智能元启发式算法,几乎可以应用于任何优化问题。在本文中,我们讨论了一种基于蚁群算法的性能评估,该算法用于解决具有连续变量的大规模全局优化问题,称为微分反污名算法(DASA)。DASA将实参数优化问题转化为图搜索问题。分配给图顶点的参数差异用于在搜索空间中导航。DASA的性能在CEC 2010年特别会议和大规模全局优化竞赛中提供的一组基准问题上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The differential Ant-Stigmergy Algorithm for large-scale global optimization
Ant-colony optimization (ACO) is a popular swarm intelligence metaheuristic scheme that can be applied to almost any optimization problem. In this paper, we address a performance evaluation of an ACO-based algorithm for solving large-scale global optimization problems with continuous variables, labeled Differential Ant-Stigmergy Algorithm (DASA). The DASA transforms a real-parameter optimization problem into a graph-search problem. The parameters' differences assigned to the graph vertices are used to navigate through the search space. The performance of the DASA is evaluated on the set of benchmark problems provided for CEC'2010 Special Session and Competition on Large-Scale Global Optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1