基于内容的图像检索的可验证搜索引擎vCBIR

Shangwei Guo, Yang Ji, Ce Zhang, Cheng Xu, Jianliang Xu
{"title":"基于内容的图像检索的可验证搜索引擎vCBIR","authors":"Shangwei Guo, Yang Ji, Ce Zhang, Cheng Xu, Jianliang Xu","doi":"10.1109/ICDE48307.2020.00156","DOIUrl":null,"url":null,"abstract":"We demonstrate vCBIR, a verifiable search engine for Content-Based Image Retrieval. vCBIR allows a small or medium-sized enterprise to outsource its image database to a cloud-based service provider and ensures the integrity of query processing. Like other common data-as-a-service (DaaS) systems, vCBIR consists of three parties: (i) the image owner who outsources its database, (ii) the service provider who executes the authenticated query processing, and (iii) the client who issues search queries. By employing a novel query authentication scheme proposed in our prior work [4], the system not only supports cloud-based image retrieval, but also generates a cryptographic proof for each query, by which the client could verify the integrity of query results. During the demonstration, we will showcase the usage of vCBIR and also provide attendees interactive experience of verifying query results against an untrustworthy service provider through graphical user interface (GUI).","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"5 1","pages":"1730-1733"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"vCBIR: A Verifiable Search Engine for Content-Based Image Retrieval\",\"authors\":\"Shangwei Guo, Yang Ji, Ce Zhang, Cheng Xu, Jianliang Xu\",\"doi\":\"10.1109/ICDE48307.2020.00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate vCBIR, a verifiable search engine for Content-Based Image Retrieval. vCBIR allows a small or medium-sized enterprise to outsource its image database to a cloud-based service provider and ensures the integrity of query processing. Like other common data-as-a-service (DaaS) systems, vCBIR consists of three parties: (i) the image owner who outsources its database, (ii) the service provider who executes the authenticated query processing, and (iii) the client who issues search queries. By employing a novel query authentication scheme proposed in our prior work [4], the system not only supports cloud-based image retrieval, but also generates a cryptographic proof for each query, by which the client could verify the integrity of query results. During the demonstration, we will showcase the usage of vCBIR and also provide attendees interactive experience of verifying query results against an untrustworthy service provider through graphical user interface (GUI).\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"5 1\",\"pages\":\"1730-1733\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们演示了vCBIR,一个基于内容的图像检索的可验证搜索引擎。vCBIR允许中小型企业将其图像数据库外包给基于云的服务提供商,并确保查询处理的完整性。与其他常见的数据即服务(DaaS)系统一样,vCBIR由三方组成:(i)将其数据库外包的映像所有者,(ii)执行身份验证查询处理的服务提供商,以及(iii)发出搜索查询的客户端。通过采用我们在之前的工作[4]中提出的一种新的查询认证方案,系统不仅支持基于云的图像检索,而且还为每个查询生成一个加密证明,客户端可以通过该验证查询结果的完整性。在演示过程中,我们将展示vCBIR的使用,并通过图形用户界面(GUI)为与会者提供针对不可信的服务提供商验证查询结果的交互式体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
vCBIR: A Verifiable Search Engine for Content-Based Image Retrieval
We demonstrate vCBIR, a verifiable search engine for Content-Based Image Retrieval. vCBIR allows a small or medium-sized enterprise to outsource its image database to a cloud-based service provider and ensures the integrity of query processing. Like other common data-as-a-service (DaaS) systems, vCBIR consists of three parties: (i) the image owner who outsources its database, (ii) the service provider who executes the authenticated query processing, and (iii) the client who issues search queries. By employing a novel query authentication scheme proposed in our prior work [4], the system not only supports cloud-based image retrieval, but also generates a cryptographic proof for each query, by which the client could verify the integrity of query results. During the demonstration, we will showcase the usage of vCBIR and also provide attendees interactive experience of verifying query results against an untrustworthy service provider through graphical user interface (GUI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1