{"title":"协同MIMO-AF系统节能联合源中继预编码设计","authors":"F. Héliot, R. Tafazolli","doi":"10.1109/EuCNC.2017.7980679","DOIUrl":null,"url":null,"abstract":"This paper derives an optimal source and a close-to-optimal relay precoding structures for minimising the energy consumption of cooperative multiple-input-multiple-output (MIMO) amplify-and-forward (AF) systems, i.e. when relay and direct links are jointly considered. Even though the optimisation problem at hand is generally non-convex, we prove that the energy consumption optimisation function is unimodal when either the source or relay precoding matrix is known. Then, an iterative process is utilised to jointly optimise the source and relay precoding matrices. Simulation results confirm the benefit, in terms of energy consumption, of our novel approach for cooperative MIMO-AF systems in comparison with approaches optimising either the direct or relay link only, with a 20–30% improvement gain in favorable channel conditions.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy-efficient joint source and relay precoding design for cooperative MIMO-AF systems\",\"authors\":\"F. Héliot, R. Tafazolli\",\"doi\":\"10.1109/EuCNC.2017.7980679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives an optimal source and a close-to-optimal relay precoding structures for minimising the energy consumption of cooperative multiple-input-multiple-output (MIMO) amplify-and-forward (AF) systems, i.e. when relay and direct links are jointly considered. Even though the optimisation problem at hand is generally non-convex, we prove that the energy consumption optimisation function is unimodal when either the source or relay precoding matrix is known. Then, an iterative process is utilised to jointly optimise the source and relay precoding matrices. Simulation results confirm the benefit, in terms of energy consumption, of our novel approach for cooperative MIMO-AF systems in comparison with approaches optimising either the direct or relay link only, with a 20–30% improvement gain in favorable channel conditions.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient joint source and relay precoding design for cooperative MIMO-AF systems
This paper derives an optimal source and a close-to-optimal relay precoding structures for minimising the energy consumption of cooperative multiple-input-multiple-output (MIMO) amplify-and-forward (AF) systems, i.e. when relay and direct links are jointly considered. Even though the optimisation problem at hand is generally non-convex, we prove that the energy consumption optimisation function is unimodal when either the source or relay precoding matrix is known. Then, an iterative process is utilised to jointly optimise the source and relay precoding matrices. Simulation results confirm the benefit, in terms of energy consumption, of our novel approach for cooperative MIMO-AF systems in comparison with approaches optimising either the direct or relay link only, with a 20–30% improvement gain in favorable channel conditions.