{"title":"KH2PO4的振动、结构和铁电性质的壳层模型和第一性原理计算","authors":"R. Menchón, F. Torresi, J. Lasave, S. Koval","doi":"10.5488/CMP.25.43709","DOIUrl":null,"url":null,"abstract":"We develop a shell model (SM) for potassium dihydrogen phosphate (KDP) which is fitted to ab initio (AI) results that include nonlocal van der Waals corrections. The SM is comprehensively tested by comparing results of structural, vibrational and ferroelectric properties with AI and experimental data. The relaxed structural parameters are in very good agreement with the AI results and the available experimental data. The Γ-point phonons and the total phonon densities of states (DOSs) in the ferroelectric and paraelectric phases calculated with the developed SM are in good overall agreement with the corresponding AI and experimental data. We also compute the effective Debye temperature as a function of T which shows good accordance with the corresponding AI and experimental results. Classical molecular dynamics (MD) simulations obtained with the developed SM show a FE-PE phase transition at ≈ 360 K in remarkable agreement with ab initio MD calculations.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"199 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shell-model and first-principles calculations of vibrational, structural and ferroelectric properties of KH2PO4\",\"authors\":\"R. Menchón, F. Torresi, J. Lasave, S. Koval\",\"doi\":\"10.5488/CMP.25.43709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a shell model (SM) for potassium dihydrogen phosphate (KDP) which is fitted to ab initio (AI) results that include nonlocal van der Waals corrections. The SM is comprehensively tested by comparing results of structural, vibrational and ferroelectric properties with AI and experimental data. The relaxed structural parameters are in very good agreement with the AI results and the available experimental data. The Γ-point phonons and the total phonon densities of states (DOSs) in the ferroelectric and paraelectric phases calculated with the developed SM are in good overall agreement with the corresponding AI and experimental data. We also compute the effective Debye temperature as a function of T which shows good accordance with the corresponding AI and experimental results. Classical molecular dynamics (MD) simulations obtained with the developed SM show a FE-PE phase transition at ≈ 360 K in remarkable agreement with ab initio MD calculations.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.25.43709\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.43709","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Shell-model and first-principles calculations of vibrational, structural and ferroelectric properties of KH2PO4
We develop a shell model (SM) for potassium dihydrogen phosphate (KDP) which is fitted to ab initio (AI) results that include nonlocal van der Waals corrections. The SM is comprehensively tested by comparing results of structural, vibrational and ferroelectric properties with AI and experimental data. The relaxed structural parameters are in very good agreement with the AI results and the available experimental data. The Γ-point phonons and the total phonon densities of states (DOSs) in the ferroelectric and paraelectric phases calculated with the developed SM are in good overall agreement with the corresponding AI and experimental data. We also compute the effective Debye temperature as a function of T which shows good accordance with the corresponding AI and experimental results. Classical molecular dynamics (MD) simulations obtained with the developed SM show a FE-PE phase transition at ≈ 360 K in remarkable agreement with ab initio MD calculations.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.