{"title":"小分子在高岭石上的吸附和插层——分子模拟研究","authors":"A. Táborosi, R. Kurdi, R. Szilagyi","doi":"10.1515/358","DOIUrl":null,"url":null,"abstract":"Kaolinite is an abundant natural material with considerable industrial potential. Despite its simple composition (Al2Si2O5(OH)4 and layered structure being a phyllosilicate), it is notable that only little known about the interaction of kaolinite sheets with small organic reagents at the molecular level. These assumed to govern intercalation, delamination, and then the complete exfoliation processes. A common methodology to model the molecular structure of kaolinite is the employment of periodic boundary conditions. The application of molecular cluster models gained importance nowadays by capitalizing on the availability of wide range of theoretical tools for describing structural features and reaction mechanisms. In this study, we present our results using theoretical methodologies and modelling strategies from literature that are applied for adsorption and intercalation of urea, ethylene glycol, and potassium acetate.","PeriodicalId":13010,"journal":{"name":"Hungarian Journal of Industrial Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adsorption and Intercalation of Small Molecules on Kaolinite from Molecular Modelling Studies\",\"authors\":\"A. Táborosi, R. Kurdi, R. Szilagyi\",\"doi\":\"10.1515/358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kaolinite is an abundant natural material with considerable industrial potential. Despite its simple composition (Al2Si2O5(OH)4 and layered structure being a phyllosilicate), it is notable that only little known about the interaction of kaolinite sheets with small organic reagents at the molecular level. These assumed to govern intercalation, delamination, and then the complete exfoliation processes. A common methodology to model the molecular structure of kaolinite is the employment of periodic boundary conditions. The application of molecular cluster models gained importance nowadays by capitalizing on the availability of wide range of theoretical tools for describing structural features and reaction mechanisms. In this study, we present our results using theoretical methodologies and modelling strategies from literature that are applied for adsorption and intercalation of urea, ethylene glycol, and potassium acetate.\",\"PeriodicalId\":13010,\"journal\":{\"name\":\"Hungarian Journal of Industrial Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Journal of Industrial Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industrial Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption and Intercalation of Small Molecules on Kaolinite from Molecular Modelling Studies
Kaolinite is an abundant natural material with considerable industrial potential. Despite its simple composition (Al2Si2O5(OH)4 and layered structure being a phyllosilicate), it is notable that only little known about the interaction of kaolinite sheets with small organic reagents at the molecular level. These assumed to govern intercalation, delamination, and then the complete exfoliation processes. A common methodology to model the molecular structure of kaolinite is the employment of periodic boundary conditions. The application of molecular cluster models gained importance nowadays by capitalizing on the availability of wide range of theoretical tools for describing structural features and reaction mechanisms. In this study, we present our results using theoretical methodologies and modelling strategies from literature that are applied for adsorption and intercalation of urea, ethylene glycol, and potassium acetate.