低成本,USB连接和多用途的生物电位记录系统。

Han Sun, Jiayang Liu, Kelilah L Wolkowicz, Xiong Zhang, B. Gluckman
{"title":"低成本,USB连接和多用途的生物电位记录系统。","authors":"Han Sun, Jiayang Liu, Kelilah L Wolkowicz, Xiong Zhang, B. Gluckman","doi":"10.1109/EMBC.2018.8513301","DOIUrl":null,"url":null,"abstract":"Several research arenas and clinical applications are reliant on biopotential recordings, such as electroencephalography (EEG), electromyography (EMG), electrocardiography (ECG), and neural interfaces including brain computer interface (BCI). Here, we present a low-cost, biopotential, acquisition hardware platform board (PSUEEG platform) suitable for a wide range of recording tasks. Implementations of the hardware include applications requiring 8 or 16 channels of biopotential recordings, and 3-axis accelerometer measurements, among other modalities. The device firmware allows for flexible software configuration through USB. Power and data are transmitted between the device and base computer through an electrically isolated USB. The device is compatible with a range of computer operating systems, including Windows, Linux, and OSX. Additionally, we have crafted data acquisition under a range of programming platforms, including C++, Python, MATLAB Simulink, and LabView. Notably, we have demonstrated the interface with the Matlab PsychToolbox and the popular BCI2000 platform. The acquisition system with can be used in educational and research-based applications, neural interfaces, and clinical interfaces. For education and research, we have utilized this platform in BCI work, as well as demonstrated comparable classification performance for different paradigms.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"42 1","pages":"4359-4362"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System.\",\"authors\":\"Han Sun, Jiayang Liu, Kelilah L Wolkowicz, Xiong Zhang, B. Gluckman\",\"doi\":\"10.1109/EMBC.2018.8513301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several research arenas and clinical applications are reliant on biopotential recordings, such as electroencephalography (EEG), electromyography (EMG), electrocardiography (ECG), and neural interfaces including brain computer interface (BCI). Here, we present a low-cost, biopotential, acquisition hardware platform board (PSUEEG platform) suitable for a wide range of recording tasks. Implementations of the hardware include applications requiring 8 or 16 channels of biopotential recordings, and 3-axis accelerometer measurements, among other modalities. The device firmware allows for flexible software configuration through USB. Power and data are transmitted between the device and base computer through an electrically isolated USB. The device is compatible with a range of computer operating systems, including Windows, Linux, and OSX. Additionally, we have crafted data acquisition under a range of programming platforms, including C++, Python, MATLAB Simulink, and LabView. Notably, we have demonstrated the interface with the Matlab PsychToolbox and the popular BCI2000 platform. The acquisition system with can be used in educational and research-based applications, neural interfaces, and clinical interfaces. For education and research, we have utilized this platform in BCI work, as well as demonstrated comparable classification performance for different paradigms.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"42 1\",\"pages\":\"4359-4362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2018.8513301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2018.8513301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些研究领域和临床应用依赖于生物电位记录,如脑电图(EEG)、肌电图(EMG)、心电图(ECG)和包括脑机接口(BCI)在内的神经接口。在这里,我们提出了一个低成本,生物电位,采集硬件平台板(PSUEEG平台)适用于广泛的记录任务。硬件的实现包括需要8或16通道生物电位记录的应用,以及3轴加速度计测量,以及其他模式。设备固件允许通过USB进行灵活的软件配置。电源和数据通过一个电隔离的USB在设备和基础计算机之间传输。本设备兼容多种计算机操作系统,包括Windows、Linux和OSX。此外,我们还在一系列编程平台下制作了数据采集,包括c++, Python, MATLAB Simulink和LabView。值得注意的是,我们已经演示了Matlab PsychToolbox和流行的BCI2000平台的接口。该采集系统可用于教育和研究应用、神经接口和临床接口。在教育和研究方面,我们已经将该平台应用于脑机接口工作,并展示了不同范式的可比较分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System.
Several research arenas and clinical applications are reliant on biopotential recordings, such as electroencephalography (EEG), electromyography (EMG), electrocardiography (ECG), and neural interfaces including brain computer interface (BCI). Here, we present a low-cost, biopotential, acquisition hardware platform board (PSUEEG platform) suitable for a wide range of recording tasks. Implementations of the hardware include applications requiring 8 or 16 channels of biopotential recordings, and 3-axis accelerometer measurements, among other modalities. The device firmware allows for flexible software configuration through USB. Power and data are transmitted between the device and base computer through an electrically isolated USB. The device is compatible with a range of computer operating systems, including Windows, Linux, and OSX. Additionally, we have crafted data acquisition under a range of programming platforms, including C++, Python, MATLAB Simulink, and LabView. Notably, we have demonstrated the interface with the Matlab PsychToolbox and the popular BCI2000 platform. The acquisition system with can be used in educational and research-based applications, neural interfaces, and clinical interfaces. For education and research, we have utilized this platform in BCI work, as well as demonstrated comparable classification performance for different paradigms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip. A Comparison of 1-D and 2-D Deep Convolutional Neural Networks in ECG Classification Brain Morphometry Analysis with Surface Foliation Theory Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System. A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1