多项逻辑选择模型下的鲁棒产品线定价

Wei Qi, Xinggang Luo, Xuwang Liu, Zhongliang Zhang
{"title":"多项逻辑选择模型下的鲁棒产品线定价","authors":"Wei Qi, Xinggang Luo, Xuwang Liu, Zhongliang Zhang","doi":"10.1177/1063293X221102205","DOIUrl":null,"url":null,"abstract":"Incorporating consumer choice behavior into a product line design optimization model enhances the understanding of consumer choices and improves the opportunities to increase profit. Most product line optimization problems assume that parameters are precisely known in consumer choice model. However, the decision maker does not precisely know the model parameters because of insufficient sample data, measurement problems, and other factors. We investigate the problem of establishing robust product line pricing under a multinomial logit model to account for the uncertainty of the valuation parameter. First, we present a nominal product line model to maximize profit. We then establish a robust product line model to maximize the worst-case expected profit, where the valuation parameter lies in an uncertainty set. We consider both single and multiple products development and derive the optimal prices’ closed-form expressions. Through numerical experiments, we illustrate the benefit of robust product line pricing to address parameter uncertainty. We demonstrate that the difference between the expected nominal profit and the worst-case profit increases with the increase of the interval of the uncertainty set, and the robust profit relative to the worst-case nominal profit improves. The robust product line design can ensure steadier, even higher profit.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"22 1","pages":"273 - 282"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust product line pricing under the multinomial logit choice model\",\"authors\":\"Wei Qi, Xinggang Luo, Xuwang Liu, Zhongliang Zhang\",\"doi\":\"10.1177/1063293X221102205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating consumer choice behavior into a product line design optimization model enhances the understanding of consumer choices and improves the opportunities to increase profit. Most product line optimization problems assume that parameters are precisely known in consumer choice model. However, the decision maker does not precisely know the model parameters because of insufficient sample data, measurement problems, and other factors. We investigate the problem of establishing robust product line pricing under a multinomial logit model to account for the uncertainty of the valuation parameter. First, we present a nominal product line model to maximize profit. We then establish a robust product line model to maximize the worst-case expected profit, where the valuation parameter lies in an uncertainty set. We consider both single and multiple products development and derive the optimal prices’ closed-form expressions. Through numerical experiments, we illustrate the benefit of robust product line pricing to address parameter uncertainty. We demonstrate that the difference between the expected nominal profit and the worst-case profit increases with the increase of the interval of the uncertainty set, and the robust profit relative to the worst-case nominal profit improves. The robust product line design can ensure steadier, even higher profit.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"22 1\",\"pages\":\"273 - 282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X221102205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X221102205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将消费者选择行为纳入产品线设计优化模型,可以增强对消费者选择的理解,提高利润增加的机会。在消费者选择模型中,大多数生产线优化问题都假定参数是精确已知的。然而,由于样本数据不足、测量问题等因素,决策者并不准确地知道模型参数。我们研究了在多项式逻辑模型下建立稳健产品线定价的问题,以考虑估值参数的不确定性。首先,我们提出了一个名义产品线模型,以实现利润最大化。然后,我们建立了一个鲁棒产品线模型,以最大化最坏情况下的预期利润,其中估值参数位于一个不确定性集。我们考虑了单产品和多产品的开发,并推导了最优价格的封闭表达式。通过数值实验,我们说明了鲁棒产品线定价对解决参数不确定性的好处。我们证明了期望名义利润与最坏情况利润之间的差值随着不确定性集区间的增加而增加,并且相对于最坏情况名义利润的鲁棒利润有所提高。稳健的产品线设计可以确保更稳定,甚至更高的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust product line pricing under the multinomial logit choice model
Incorporating consumer choice behavior into a product line design optimization model enhances the understanding of consumer choices and improves the opportunities to increase profit. Most product line optimization problems assume that parameters are precisely known in consumer choice model. However, the decision maker does not precisely know the model parameters because of insufficient sample data, measurement problems, and other factors. We investigate the problem of establishing robust product line pricing under a multinomial logit model to account for the uncertainty of the valuation parameter. First, we present a nominal product line model to maximize profit. We then establish a robust product line model to maximize the worst-case expected profit, where the valuation parameter lies in an uncertainty set. We consider both single and multiple products development and derive the optimal prices’ closed-form expressions. Through numerical experiments, we illustrate the benefit of robust product line pricing to address parameter uncertainty. We demonstrate that the difference between the expected nominal profit and the worst-case profit increases with the increase of the interval of the uncertainty set, and the robust profit relative to the worst-case nominal profit improves. The robust product line design can ensure steadier, even higher profit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification Retraction Notice Decision-making solutions based artificial intelligence and hybrid software for optimal sizing and energy management in a smart grid system Harness collaboration between manufacturing Small and medium-sized enterprises through a collaborative platform based on the business model canvas Research on the evolution law of cloud manufacturing service ecosystem based on multi-agent behavior simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1