{"title":"特征态期望值随系统大小的收敛性","authors":"Yichen Huang","doi":"10.4310/ATMP.2022.v26.n6.a5","DOIUrl":null,"url":null,"abstract":"Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of eigenstate expectation values with system size\",\"authors\":\"Yichen Huang\",\"doi\":\"10.4310/ATMP.2022.v26.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/ATMP.2022.v26.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2022.v26.n6.a5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Convergence of eigenstate expectation values with system size
Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.