两轴线切割加工螺旋槽

H. Takezawa, Yuta Umeda, Ren Motomura, Shunya Hirano
{"title":"两轴线切割加工螺旋槽","authors":"H. Takezawa, Yuta Umeda, Ren Motomura, Shunya Hirano","doi":"10.20965/ijat.2022.p0879","DOIUrl":null,"url":null,"abstract":"In wire electrical discharge machining (WEDM) that can perform 2-D or 2.5-D machining, 3-D complex shape machining is also possible via the addition of a rotary axis on the NC table. Several examples of pin-shaped machining using a rotating shaft like spindle have been previously reported. Alternatively, machining using a rotary axis as an indexing device has also been reported. In these machining processes, the rotary axis is not servo controlled. Conversely, a spiral groove is formed on the outer circumference of the round bar by gripping the round bar workpiece on the rotary axis and performing machining in synchronization with the x- and rotary axes. In this machining, the gap control in electrical discharge machining is performed along the x- and rotary axes. Furthermore, complicated shape machining becomes possible by adding a 2-axis rotary axis of rotation and tilt. When the x-axis is synchronized with the rotation and tilt axes, a spiral groove with a variable groove width is formed. In this case, servo control is synchronized with the three axes, and machining proceeds. In this study, we performed spiral groove shape machining through WEDM with the addition of 1-axis or 2-axis rotary axes, consequently verifying the machining accuracy. Moreover, two types of NC program were used for machining, direct input and CAM output, and the accuracy was compared. The results revealed that the groove width was wider in the direct input program. Therefore, there was a possibility that the wire could bend during machining and tilt along the direction of the apparent widening of the groove width. Thus, it is necessary to consider the deflection of the wire in WEDM with a rotary axis, which is different from the conventional one, to realize precision machining.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"37 1","pages":"879-887"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiral Groove Machining Through Wire Electrical Discharge Machining with Two Rotary Axes\",\"authors\":\"H. Takezawa, Yuta Umeda, Ren Motomura, Shunya Hirano\",\"doi\":\"10.20965/ijat.2022.p0879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wire electrical discharge machining (WEDM) that can perform 2-D or 2.5-D machining, 3-D complex shape machining is also possible via the addition of a rotary axis on the NC table. Several examples of pin-shaped machining using a rotating shaft like spindle have been previously reported. Alternatively, machining using a rotary axis as an indexing device has also been reported. In these machining processes, the rotary axis is not servo controlled. Conversely, a spiral groove is formed on the outer circumference of the round bar by gripping the round bar workpiece on the rotary axis and performing machining in synchronization with the x- and rotary axes. In this machining, the gap control in electrical discharge machining is performed along the x- and rotary axes. Furthermore, complicated shape machining becomes possible by adding a 2-axis rotary axis of rotation and tilt. When the x-axis is synchronized with the rotation and tilt axes, a spiral groove with a variable groove width is formed. In this case, servo control is synchronized with the three axes, and machining proceeds. In this study, we performed spiral groove shape machining through WEDM with the addition of 1-axis or 2-axis rotary axes, consequently verifying the machining accuracy. Moreover, two types of NC program were used for machining, direct input and CAM output, and the accuracy was compared. The results revealed that the groove width was wider in the direct input program. Therefore, there was a possibility that the wire could bend during machining and tilt along the direction of the apparent widening of the groove width. Thus, it is necessary to consider the deflection of the wire in WEDM with a rotary axis, which is different from the conventional one, to realize precision machining.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"37 1\",\"pages\":\"879-887\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在可以进行二维或2.5维加工的线切割加工(WEDM)中,通过在数控工作台上增加旋转轴也可以进行三维复杂形状的加工。以前报道过几个使用旋转轴的销形加工的例子。另外,使用旋转轴作为分度装置的加工也有报道。在这些加工过程中,旋转轴不是伺服控制的。相反,通过在旋转轴上夹持圆杆工件并与x轴和旋转轴同步进行加工,在圆杆的外圆周上形成螺旋槽。在这种加工中,沿x轴和旋转轴进行电火花加工中的间隙控制。此外,通过增加旋转和倾斜的两轴旋转轴,复杂的形状加工成为可能。当x轴与旋转轴和倾斜轴同步时,形成可变槽宽的螺旋槽。在这种情况下,伺服控制与三轴同步,加工继续进行。在本研究中,我们通过线切割进行螺旋槽形加工,增加了1轴或2轴旋转轴,从而验证了加工精度。采用直接输入和凸轮输出两种数控程序进行加工,并对加工精度进行了比较。结果表明,直接输入方案的凹槽宽度更宽。因此,线材有可能在加工过程中发生弯曲,并沿槽宽明显加宽的方向倾斜。因此,为实现精密加工,有必要考虑具有旋转轴的线切割加工中不同于传统线切割加工的线材挠度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spiral Groove Machining Through Wire Electrical Discharge Machining with Two Rotary Axes
In wire electrical discharge machining (WEDM) that can perform 2-D or 2.5-D machining, 3-D complex shape machining is also possible via the addition of a rotary axis on the NC table. Several examples of pin-shaped machining using a rotating shaft like spindle have been previously reported. Alternatively, machining using a rotary axis as an indexing device has also been reported. In these machining processes, the rotary axis is not servo controlled. Conversely, a spiral groove is formed on the outer circumference of the round bar by gripping the round bar workpiece on the rotary axis and performing machining in synchronization with the x- and rotary axes. In this machining, the gap control in electrical discharge machining is performed along the x- and rotary axes. Furthermore, complicated shape machining becomes possible by adding a 2-axis rotary axis of rotation and tilt. When the x-axis is synchronized with the rotation and tilt axes, a spiral groove with a variable groove width is formed. In this case, servo control is synchronized with the three axes, and machining proceeds. In this study, we performed spiral groove shape machining through WEDM with the addition of 1-axis or 2-axis rotary axes, consequently verifying the machining accuracy. Moreover, two types of NC program were used for machining, direct input and CAM output, and the accuracy was compared. The results revealed that the groove width was wider in the direct input program. Therefore, there was a possibility that the wire could bend during machining and tilt along the direction of the apparent widening of the groove width. Thus, it is necessary to consider the deflection of the wire in WEDM with a rotary axis, which is different from the conventional one, to realize precision machining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1