利用色相分量的循环处理实现一种新的感知色差度量

Dohyoung Lee, K. Plataniotis
{"title":"利用色相分量的循环处理实现一种新的感知色差度量","authors":"Dohyoung Lee, K. Plataniotis","doi":"10.1109/ICASSP.2014.6853579","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel metric for image difference prediction, capable of handling color data. The proposed metric, namely, color difference index based on circular hue, is a full-reference based scheme, which independently processes achromatic and chromatic differences of two input color images. Within the framework, chromatic information is analyzed using two perceptual attributes, hue and chroma information, simulating human visual system mechanism. Unlike conventional approaches where the periodic nature of hue is disregarded, we propose to estimate hue difference by adopting theory of circular statistics. Performance of the proposed solution is validated using benchmark image quality assessment databases. Experimental results indicate the effectiveness of the proposed metric against a wide range of distortions, especially on chromatic distortions, making it better suited for color gamut mapping applications.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"80 1","pages":"166-170"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards anovel perceptual color difference metric using circular processing of hue components\",\"authors\":\"Dohyoung Lee, K. Plataniotis\",\"doi\":\"10.1109/ICASSP.2014.6853579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel metric for image difference prediction, capable of handling color data. The proposed metric, namely, color difference index based on circular hue, is a full-reference based scheme, which independently processes achromatic and chromatic differences of two input color images. Within the framework, chromatic information is analyzed using two perceptual attributes, hue and chroma information, simulating human visual system mechanism. Unlike conventional approaches where the periodic nature of hue is disregarded, we propose to estimate hue difference by adopting theory of circular statistics. Performance of the proposed solution is validated using benchmark image quality assessment databases. Experimental results indicate the effectiveness of the proposed metric against a wide range of distortions, especially on chromatic distortions, making it better suited for color gamut mapping applications.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"80 1\",\"pages\":\"166-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6853579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6853579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种能够处理颜色数据的图像差分预测新度量。提出的基于圆形色相的色差指数度量是一种基于全参考的方案,该方案独立处理两幅输入彩色图像的消色差和色差。在该框架内,利用色相和色度两种感知属性对色彩信息进行分析,模拟人类视觉系统机制。与忽略色相周期性的传统方法不同,我们提出采用循环统计理论来估计色相差异。使用基准图像质量评估数据库验证了该解决方案的性能。实验结果表明,所提出的度量对各种失真的有效性,特别是对颜色失真的有效性,使其更适合色域映射应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards anovel perceptual color difference metric using circular processing of hue components
This paper introduces a novel metric for image difference prediction, capable of handling color data. The proposed metric, namely, color difference index based on circular hue, is a full-reference based scheme, which independently processes achromatic and chromatic differences of two input color images. Within the framework, chromatic information is analyzed using two perceptual attributes, hue and chroma information, simulating human visual system mechanism. Unlike conventional approaches where the periodic nature of hue is disregarded, we propose to estimate hue difference by adopting theory of circular statistics. Performance of the proposed solution is validated using benchmark image quality assessment databases. Experimental results indicate the effectiveness of the proposed metric against a wide range of distortions, especially on chromatic distortions, making it better suited for color gamut mapping applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1