野火:并发燃烧数据摄取和分析

Ronald Barber, Matthew Huras, G. Lohman, C. Mohan, René Müller, Fatma Özcan, H. Pirahesh, Vijayshankar Raman, Richard Sidle, O. Sidorkin, Adam J. Storm, Yuanyuan Tian, Pınar Tözün
{"title":"野火:并发燃烧数据摄取和分析","authors":"Ronald Barber, Matthew Huras, G. Lohman, C. Mohan, René Müller, Fatma Özcan, H. Pirahesh, Vijayshankar Raman, Richard Sidle, O. Sidorkin, Adam J. Storm, Yuanyuan Tian, Pınar Tözün","doi":"10.1145/2882903.2899406","DOIUrl":null,"url":null,"abstract":"We demonstrate Hybrid Transactional and Analytics Processing (HTAP) on the Spark platform by the Wildfire prototype, which can ingest up to ~6 million inserts per second per node and simultaneously perform complex SQL analytics queries. Here, a simplified mobile application uses Wildfire to recommend advertising to mobile customers based upon their distance from stores and their interest in products sold by these stores, while continuously graphing analytics results as those customers move and respond to the ads with purchases.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Wildfire: Concurrent Blazing Data Ingest and Analytics\",\"authors\":\"Ronald Barber, Matthew Huras, G. Lohman, C. Mohan, René Müller, Fatma Özcan, H. Pirahesh, Vijayshankar Raman, Richard Sidle, O. Sidorkin, Adam J. Storm, Yuanyuan Tian, Pınar Tözün\",\"doi\":\"10.1145/2882903.2899406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate Hybrid Transactional and Analytics Processing (HTAP) on the Spark platform by the Wildfire prototype, which can ingest up to ~6 million inserts per second per node and simultaneously perform complex SQL analytics queries. Here, a simplified mobile application uses Wildfire to recommend advertising to mobile customers based upon their distance from stores and their interest in products sold by these stores, while continuously graphing analytics results as those customers move and respond to the ads with purchases.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们通过Wildfire原型在Spark平台上演示了混合事务和分析处理(HTAP),它可以在每个节点上每秒摄取多达600万次插入,并同时执行复杂的SQL分析查询。在这里,一个简化的移动应用程序使用Wildfire向移动客户推荐广告,根据他们与商店的距离以及他们对这些商店销售的产品的兴趣,同时随着这些客户移动和购买广告,不断绘制分析结果的图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wildfire: Concurrent Blazing Data Ingest and Analytics
We demonstrate Hybrid Transactional and Analytics Processing (HTAP) on the Spark platform by the Wildfire prototype, which can ingest up to ~6 million inserts per second per node and simultaneously perform complex SQL analytics queries. Here, a simplified mobile application uses Wildfire to recommend advertising to mobile customers based upon their distance from stores and their interest in products sold by these stores, while continuously graphing analytics results as those customers move and respond to the ads with purchases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1