摘要:混合精度浮点计算的自动自适应程序

Michael O. Lam, B. Supinski, M. LeGendre, J. Hollingsworth
{"title":"摘要:混合精度浮点计算的自动自适应程序","authors":"Michael O. Lam, B. Supinski, M. LeGendre, J. Hollingsworth","doi":"10.1145/2464996.2465018","DOIUrl":null,"url":null,"abstract":"As scientific computation continues to scale, it is crucial to use floating-point arithmetic processors as efficiently as possible. Lower precision allows streaming architectures to perform more operations per second and can reduce memory bandwidth pressure on all architectures. However, using a precision that is too low for a given algorithm and data set will result in inaccurate results. In this poster, we present a framework that uses binary instrumentation and modification to build mixed-precision configurations of existing binaries that were originally developed to use only double-precision. This allows developers to easily experiment with mixed-precision configurations without modifying their source code, and it permits auto-tuning of floating-point precision. We also implemented a simple search algorithm to automatically identify which code regions can use lower precision. We include results for several benchmarks that show both the efficacy and overhead of our tool.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"154 1","pages":"1423-1423"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation\",\"authors\":\"Michael O. Lam, B. Supinski, M. LeGendre, J. Hollingsworth\",\"doi\":\"10.1145/2464996.2465018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As scientific computation continues to scale, it is crucial to use floating-point arithmetic processors as efficiently as possible. Lower precision allows streaming architectures to perform more operations per second and can reduce memory bandwidth pressure on all architectures. However, using a precision that is too low for a given algorithm and data set will result in inaccurate results. In this poster, we present a framework that uses binary instrumentation and modification to build mixed-precision configurations of existing binaries that were originally developed to use only double-precision. This allows developers to easily experiment with mixed-precision configurations without modifying their source code, and it permits auto-tuning of floating-point precision. We also implemented a simple search algorithm to automatically identify which code regions can use lower precision. We include results for several benchmarks that show both the efficacy and overhead of our tool.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"154 1\",\"pages\":\"1423-1423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2464996.2465018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2464996.2465018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

随着科学计算的不断扩展,尽可能高效地使用浮点算术处理器是至关重要的。较低的精度允许流架构每秒执行更多的操作,并且可以减少所有架构的内存带宽压力。然而,对于给定的算法和数据集,使用过低的精度将导致不准确的结果。在这张海报中,我们展示了一个框架,它使用二进制工具和修改来构建混合精度配置的现有二进制文件,而这些文件最初开发时只使用双精度。这允许开发人员在不修改源代码的情况下轻松地试验混合精度配置,并且允许自动调优浮点精度。我们还实现了一个简单的搜索算法来自动识别哪些代码区域可以使用较低的精度。我们包含了几个基准测试的结果,这些结果显示了我们的工具的效率和开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation
As scientific computation continues to scale, it is crucial to use floating-point arithmetic processors as efficiently as possible. Lower precision allows streaming architectures to perform more operations per second and can reduce memory bandwidth pressure on all architectures. However, using a precision that is too low for a given algorithm and data set will result in inaccurate results. In this poster, we present a framework that uses binary instrumentation and modification to build mixed-precision configurations of existing binaries that were originally developed to use only double-precision. This allows developers to easily experiment with mixed-precision configurations without modifying their source code, and it permits auto-tuning of floating-point precision. We also implemented a simple search algorithm to automatically identify which code regions can use lower precision. We include results for several benchmarks that show both the efficacy and overhead of our tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1