网络环境下和MPP跟踪过程中PMSG风电系统的控制

Y. Errami, A. Obbadi, S. Sahnoun
{"title":"网络环境下和MPP跟踪过程中PMSG风电系统的控制","authors":"Y. Errami, A. Obbadi, S. Sahnoun","doi":"10.1504/ijscc.2020.10027725","DOIUrl":null,"url":null,"abstract":"This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.","PeriodicalId":38610,"journal":{"name":"International Journal of Systems, Control and Communications","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of PMSG wind electrical system in network context and during the MPP tracking process\",\"authors\":\"Y. Errami, A. Obbadi, S. Sahnoun\",\"doi\":\"10.1504/ijscc.2020.10027725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.\",\"PeriodicalId\":38610,\"journal\":{\"name\":\"International Journal of Systems, Control and Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Systems, Control and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijscc.2020.10027725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems, Control and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijscc.2020.10027725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于永磁同步发电机(PMSG)的并网WES控制策略。电力系统包括5个基于pmsg的2兆瓦,它们通过整流器连接到直流母线,而电网侧逆变器通过电网侧滤波器连接到电网。并网侧逆变器的目标是将pmsg侧的能量输送到电网,调节直流母线,实现单位功率因数(UPF)。采用最大功率点跟踪算法,利用发电机侧变流器控制pmsg的速度。此外,还采用了螺距控制算法。所提出的矢量控制技术(VCT)能够完全解耦电流的正交(q)和直接(d)分量。利用MATLAB/Simulink软件进行了仿真,验证了所提出的控制方案在正常工况和故障工况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control of PMSG wind electrical system in network context and during the MPP tracking process
This study presents a control strategy for grid-connected WES based on a permanent magnet synchronous generator (PMSG). The power system comprises five PMSG-based 2 MW which connected to the dc-bus with rectifiers, whereas the grid-side inverter is connected to the power grid throughout a grid-side filter. The objectives of grid-side inverter are to deliver the energy from the PMSGs side to the power grid, to regulate the dc-bus and to achieve unity power factor (UPF). The generator side converters are employed to control the velocities of the PMSGs with maximum power point tracking algorithm. Moreover, a pitch control algorithm is used. The proposed vector control technique (VCT) is able to fully decouple the quadrature (q) and direct (d) components of the currents. Simulations results using MATLAB/Simulink software are presented to validate the proposed control scheme for fault conditions into the grid as well as for normal working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Systems, Control and Communications
International Journal of Systems, Control and Communications Engineering-Control and Systems Engineering
CiteScore
1.50
自引率
0.00%
发文量
26
期刊最新文献
A wideband G-shaped array antenna for X and Ku band applications Smart LPG usage and leakage detection using IoT and mobile application Synchronisation scheme for cluster-based interconnected network of nonlinear systems Decreasing control signal vibrations in the anti-noise model-free sliding mode control algorithm Unknown input observer design for T-S fuzzy systems with time-varying bounded delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1