俄罗斯瓦尔代高地西南部云杉死亡率动态及云杉分解CO2和CH4通量

IF 1.2 Q3 BIODIVERSITY CONSERVATION Nature Conservation Research Pub Date : 2023-01-01 DOI:10.24189/ncr.2023.013
D. Ivanov, J. Kurbatova
{"title":"俄罗斯瓦尔代高地西南部云杉死亡率动态及云杉分解CO2和CH4通量","authors":"D. Ivanov, J. Kurbatova","doi":"10.24189/ncr.2023.013","DOIUrl":null,"url":null,"abstract":"A mass decline of Picea abies (hereinafter – spruce), often associated with outbreaks of Ips typographus, is one of the main reasons for the reduction of spruce forests. In turn, dry and fallen trees can be both stock and source of greenhouse gases at various stages of decomposition. In our study, using an unmanned aerial vehicle, we evaluated the dynamics of spruce decline in two forest types in the southwest of the Valdai Upland (Central Forest State Nature Reserve, Russia), namely Sphagnum-bilberry forests and nemoral spruce forests. It was found that the rate of decline in Sphagnum-bilberry spruce forest was much higher than in nemoral spruce forest. By the fourth year after a windfall on 0.13 km2, 913 spruce individuals had withered in Sphagnum-bilberry forest and 66 ones in the nemoral spruce forest. Based on direct measurements of greenhouse gas fluxes by chamber method on dead trunks and coarse woody debris, it was found that in relative values the highest amount of CO2 is emitted by coarse woody debris of the decay classes 3–4 (800–1800 mg CO2 × m-2 × h-1). Deadwood and coarse woody debris from the first decay classes are assumed to be a source of CH4 (0.0008–0.0070 mg CO2 × m-2 × h-1), and from classes 3–5 they are a stock (from -0.0070 mg CO2 × m-2 × h-1 to -0.0009 mg CO2 × m-2 × h-1). When converted to the total surface areas of deadwood and coarse woody debris of the study sites, it was found that coarse woody debris of the decay classes 3–5 (2.3–13.6 kg CO2 × h-1) made the highest contribution to the integral CO2 emission, and deadwood (67 mg CH4 × h-1) made the highest contribution to the CH4 emission. Significant differences in greenhouse gas fluxes were found both between deadwood and decay classes of coarse woody debris, and between fluxes from deadwood and coarse woody debris of individual decay classes in various forest types. The results have shown the importance of considering deadwood and all available decay classes of coarse woody debris when estimating greenhouse gas fluxes from dead timber and the contribution of debris to the carbon cycle in forest ecosystems.","PeriodicalId":54166,"journal":{"name":"Nature Conservation Research","volume":"110 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Picea abies mortality and CO2 and CH4 fluxes from spruce trees decomposition in the southwest of the Valdai Upland, Russia\",\"authors\":\"D. Ivanov, J. Kurbatova\",\"doi\":\"10.24189/ncr.2023.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mass decline of Picea abies (hereinafter – spruce), often associated with outbreaks of Ips typographus, is one of the main reasons for the reduction of spruce forests. In turn, dry and fallen trees can be both stock and source of greenhouse gases at various stages of decomposition. In our study, using an unmanned aerial vehicle, we evaluated the dynamics of spruce decline in two forest types in the southwest of the Valdai Upland (Central Forest State Nature Reserve, Russia), namely Sphagnum-bilberry forests and nemoral spruce forests. It was found that the rate of decline in Sphagnum-bilberry spruce forest was much higher than in nemoral spruce forest. By the fourth year after a windfall on 0.13 km2, 913 spruce individuals had withered in Sphagnum-bilberry forest and 66 ones in the nemoral spruce forest. Based on direct measurements of greenhouse gas fluxes by chamber method on dead trunks and coarse woody debris, it was found that in relative values the highest amount of CO2 is emitted by coarse woody debris of the decay classes 3–4 (800–1800 mg CO2 × m-2 × h-1). Deadwood and coarse woody debris from the first decay classes are assumed to be a source of CH4 (0.0008–0.0070 mg CO2 × m-2 × h-1), and from classes 3–5 they are a stock (from -0.0070 mg CO2 × m-2 × h-1 to -0.0009 mg CO2 × m-2 × h-1). When converted to the total surface areas of deadwood and coarse woody debris of the study sites, it was found that coarse woody debris of the decay classes 3–5 (2.3–13.6 kg CO2 × h-1) made the highest contribution to the integral CO2 emission, and deadwood (67 mg CH4 × h-1) made the highest contribution to the CH4 emission. Significant differences in greenhouse gas fluxes were found both between deadwood and decay classes of coarse woody debris, and between fluxes from deadwood and coarse woody debris of individual decay classes in various forest types. The results have shown the importance of considering deadwood and all available decay classes of coarse woody debris when estimating greenhouse gas fluxes from dead timber and the contribution of debris to the carbon cycle in forest ecosystems.\",\"PeriodicalId\":54166,\"journal\":{\"name\":\"Nature Conservation Research\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Conservation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24189/ncr.2023.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Conservation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24189/ncr.2023.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

云杉树(以下简称云杉)的大量减少,通常与Ips排版病的爆发有关,是云杉林减少的主要原因之一。反过来,干燥和倒下的树木在分解的各个阶段既可以是温室气体的储备,也可以是温室气体的来源。在这项研究中,我们使用无人机评估了瓦尔代高原西南部(俄罗斯中央森林国家自然保护区)两种森林类型的云杉林的衰落动态,即sphagnumn -越莓林和nemoral云杉林。结果表明,越橘云杉林的下降速率明显高于松云杉林。在获得0.13平方公里的意外收获后的第四年,sphagnumx -bilberry林中有913棵云杉枯死,nemoral云杉林中有66棵。通过室内法直接测量枯枝和粗木屑的温室气体通量,发现3-4级的粗木屑的CO2排放量相对最高(800-1800 mg CO2 × m-2 × h-1)。第一类腐木和粗木屑被认为是CH4的来源(0.0008-0.0070 mg CO2 × m-2 × h-1),而第3-5类腐木和粗木屑被认为是CH4的储备(-0.0070 mg CO2 × m-2 × h-1至-0.0009 mg CO2 × m-2 × h-1)。将腐木和粗木屑的总表面积转化为各样点腐木3 ~ 5级(2.3 ~ 13.6 kg CO2 × h-1)的粗木屑对总CO2排放贡献最大,腐木(67 mg CH4 × h-1)对总CO2排放贡献最大。在不同森林类型中,腐木和腐木屑的腐木和腐木屑的温室气体通量存在显著差异,不同腐木屑的腐木和腐木屑的温室气体通量也存在显著差异。研究结果表明,在估算枯木的温室气体通量和枯木对森林生态系统碳循环的贡献时,考虑枯木和所有可用的粗木屑腐烂类型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of Picea abies mortality and CO2 and CH4 fluxes from spruce trees decomposition in the southwest of the Valdai Upland, Russia
A mass decline of Picea abies (hereinafter – spruce), often associated with outbreaks of Ips typographus, is one of the main reasons for the reduction of spruce forests. In turn, dry and fallen trees can be both stock and source of greenhouse gases at various stages of decomposition. In our study, using an unmanned aerial vehicle, we evaluated the dynamics of spruce decline in two forest types in the southwest of the Valdai Upland (Central Forest State Nature Reserve, Russia), namely Sphagnum-bilberry forests and nemoral spruce forests. It was found that the rate of decline in Sphagnum-bilberry spruce forest was much higher than in nemoral spruce forest. By the fourth year after a windfall on 0.13 km2, 913 spruce individuals had withered in Sphagnum-bilberry forest and 66 ones in the nemoral spruce forest. Based on direct measurements of greenhouse gas fluxes by chamber method on dead trunks and coarse woody debris, it was found that in relative values the highest amount of CO2 is emitted by coarse woody debris of the decay classes 3–4 (800–1800 mg CO2 × m-2 × h-1). Deadwood and coarse woody debris from the first decay classes are assumed to be a source of CH4 (0.0008–0.0070 mg CO2 × m-2 × h-1), and from classes 3–5 they are a stock (from -0.0070 mg CO2 × m-2 × h-1 to -0.0009 mg CO2 × m-2 × h-1). When converted to the total surface areas of deadwood and coarse woody debris of the study sites, it was found that coarse woody debris of the decay classes 3–5 (2.3–13.6 kg CO2 × h-1) made the highest contribution to the integral CO2 emission, and deadwood (67 mg CH4 × h-1) made the highest contribution to the CH4 emission. Significant differences in greenhouse gas fluxes were found both between deadwood and decay classes of coarse woody debris, and between fluxes from deadwood and coarse woody debris of individual decay classes in various forest types. The results have shown the importance of considering deadwood and all available decay classes of coarse woody debris when estimating greenhouse gas fluxes from dead timber and the contribution of debris to the carbon cycle in forest ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Conservation Research
Nature Conservation Research BIODIVERSITY CONSERVATION-
CiteScore
4.70
自引率
5.90%
发文量
34
审稿时长
13 weeks
期刊最新文献
Assessment of the threat status of reptile species from Vietnam - Implementation of the One Plan Approach to Conservation Conserving the threatened woody vegetation on dune slopes: Monitoring the decline and designing adaptive strategies for restoration Has climate change hijacked the environmental agenda? Dynamic change of habitat quality and its key driving factors in Ningxia Hui Autonomous Region, China Performance of SNP markers for parentage analysis in the Italian Alpine brown bear using non-invasive samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1