面向子区域分解的计算机科学期刊聚类科学计量学

Pub Date : 2023-08-06 DOI:10.5530/jscires.12.2.034
Priti Kumari, Rajeev Kumar
{"title":"面向子区域分解的计算机科学期刊聚类科学计量学","authors":"Priti Kumari, Rajeev Kumar","doi":"10.5530/jscires.12.2.034","DOIUrl":null,"url":null,"abstract":"Scientometrics indicators vary widely across subareas of the Computer Science (CS) discipline. Most researchers have previously analyzed scientometrics data specific to a particular subfield or a few subfields. More popular subareas lead to high scientometrics, and others have lower values. This work considers seven diversified CS subareas and six commonly used scientometrics indicators. First, we study the varying range of chosen scientometrics indicators of various subareas of the CS discipline. We explore the correlation patterns of these six indicators. Then, we consider a few combinations of these indicators and apply K -means clustering to decompose the pattern space. Correlation findings indicate that though the highly correlated indicators vary for most subfields, no single indicator can be considered equally suitable for all the subareas. The K -means clustering results show distinctive patterns across subfields, which are stable across K . The clustered subfield-specific indicators are quite distinct across subfields. This knowledge can be used as a signature for partitioning the subarea-specific indicators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering Scientometrics of Computer Science Journals for Subarea Decomposition\",\"authors\":\"Priti Kumari, Rajeev Kumar\",\"doi\":\"10.5530/jscires.12.2.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientometrics indicators vary widely across subareas of the Computer Science (CS) discipline. Most researchers have previously analyzed scientometrics data specific to a particular subfield or a few subfields. More popular subareas lead to high scientometrics, and others have lower values. This work considers seven diversified CS subareas and six commonly used scientometrics indicators. First, we study the varying range of chosen scientometrics indicators of various subareas of the CS discipline. We explore the correlation patterns of these six indicators. Then, we consider a few combinations of these indicators and apply K -means clustering to decompose the pattern space. Correlation findings indicate that though the highly correlated indicators vary for most subfields, no single indicator can be considered equally suitable for all the subareas. The K -means clustering results show distinctive patterns across subfields, which are stable across K . The clustered subfield-specific indicators are quite distinct across subfields. This knowledge can be used as a signature for partitioning the subarea-specific indicators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5530/jscires.12.2.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5530/jscires.12.2.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学计量学指标在计算机科学(CS)学科的各个子领域差异很大。大多数研究人员以前都分析过特定于一个或几个子领域的科学计量学数据。更受欢迎的子区域导致较高的科学计量学值,而其他子区域的数值较低。这项工作考虑了7个不同的CS子领域和6个常用的科学计量学指标。首先,我们研究了计算机科学学科各个子领域所选择的科学计量学指标的变化范围。我们探讨了这六个指标的相关模式。然后,我们考虑这些指标的几种组合,并应用K均值聚类来分解模式空间。相关结果表明,虽然高相关指标在大多数子领域有所不同,但没有一个单一指标可以被认为同样适用于所有子领域。K均值聚类结果在不同的子场中表现出不同的模式,这些模式在K上是稳定的。群集子字段特定的指标在子字段之间非常不同。这方面的知识可用作划分特定子地区指标的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Clustering Scientometrics of Computer Science Journals for Subarea Decomposition
Scientometrics indicators vary widely across subareas of the Computer Science (CS) discipline. Most researchers have previously analyzed scientometrics data specific to a particular subfield or a few subfields. More popular subareas lead to high scientometrics, and others have lower values. This work considers seven diversified CS subareas and six commonly used scientometrics indicators. First, we study the varying range of chosen scientometrics indicators of various subareas of the CS discipline. We explore the correlation patterns of these six indicators. Then, we consider a few combinations of these indicators and apply K -means clustering to decompose the pattern space. Correlation findings indicate that though the highly correlated indicators vary for most subfields, no single indicator can be considered equally suitable for all the subareas. The K -means clustering results show distinctive patterns across subfields, which are stable across K . The clustered subfield-specific indicators are quite distinct across subfields. This knowledge can be used as a signature for partitioning the subarea-specific indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1