Patrick Koeberl, Steffen Schulz, A. Sadeghi, V. Varadharajan
{"title":"TrustLite:用于微型嵌入式设备的安全架构","authors":"Patrick Koeberl, Steffen Schulz, A. Sadeghi, V. Varadharajan","doi":"10.1145/2592798.2592824","DOIUrl":null,"url":null,"abstract":"Embedded systems are increasingly pervasive, interdependent and in many cases critical to our every day life and safety. Tiny devices that cannot afford sophisticated hardware security mechanisms are embedded in complex control infrastructures, medical support systems and entertainment products [51]. As such devices are increasingly subject to attacks, new hardware protection mechanisms are needed to provide the required resilience and dependency at low cost.\n In this work, we present the TrustLite security architecture for flexible, hardware-enforced isolation of software modules. We describe mechanisms for secure exception handling and communication between protected modules, enabling seamless interoperability with untrusted operating systems and tasks. TrustLite scales from providing a simple protected firmware runtime to advanced functionality such as attestation and trusted execution of userspace tasks. Our FPGA prototype shows that these capabilities are achievable even on low-cost embedded systems.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"29 1","pages":"10:1-10:14"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"326","resultStr":"{\"title\":\"TrustLite: a security architecture for tiny embedded devices\",\"authors\":\"Patrick Koeberl, Steffen Schulz, A. Sadeghi, V. Varadharajan\",\"doi\":\"10.1145/2592798.2592824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded systems are increasingly pervasive, interdependent and in many cases critical to our every day life and safety. Tiny devices that cannot afford sophisticated hardware security mechanisms are embedded in complex control infrastructures, medical support systems and entertainment products [51]. As such devices are increasingly subject to attacks, new hardware protection mechanisms are needed to provide the required resilience and dependency at low cost.\\n In this work, we present the TrustLite security architecture for flexible, hardware-enforced isolation of software modules. We describe mechanisms for secure exception handling and communication between protected modules, enabling seamless interoperability with untrusted operating systems and tasks. TrustLite scales from providing a simple protected firmware runtime to advanced functionality such as attestation and trusted execution of userspace tasks. Our FPGA prototype shows that these capabilities are achievable even on low-cost embedded systems.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"29 1\",\"pages\":\"10:1-10:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"326\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2592798.2592824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TrustLite: a security architecture for tiny embedded devices
Embedded systems are increasingly pervasive, interdependent and in many cases critical to our every day life and safety. Tiny devices that cannot afford sophisticated hardware security mechanisms are embedded in complex control infrastructures, medical support systems and entertainment products [51]. As such devices are increasingly subject to attacks, new hardware protection mechanisms are needed to provide the required resilience and dependency at low cost.
In this work, we present the TrustLite security architecture for flexible, hardware-enforced isolation of software modules. We describe mechanisms for secure exception handling and communication between protected modules, enabling seamless interoperability with untrusted operating systems and tasks. TrustLite scales from providing a simple protected firmware runtime to advanced functionality such as attestation and trusted execution of userspace tasks. Our FPGA prototype shows that these capabilities are achievable even on low-cost embedded systems.