反应体积对天然橡胶-甲基丙烯酸甲酯性能的影响

IF 1.4 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Elastomers and Plastics Pub Date : 2010-01-01 DOI:10.1177/0095244309345410
E. Kalkornsurapranee, K. Sahakaro, Azizon Kaesaman, C. Nakason
{"title":"反应体积对天然橡胶-甲基丙烯酸甲酯性能的影响","authors":"E. Kalkornsurapranee, K. Sahakaro, Azizon Kaesaman, C. Nakason","doi":"10.1177/0095244309345410","DOIUrl":null,"url":null,"abstract":"Graft copolymer of natural rubber and poly(methyl methacrylate) was prepared using CHP/TEPA redox initiators at 50°C and a reaction time of 3 h. Various reaction volumes (i.e., 0.5, 100, and 200 L) were used to prepare the graft copolymer which was then characterized by Fourier transform infrared spectrophotometer and proton nuclear magnetic resonance spectrophotometer (1H-NMR) techniques. It was found that conversion of monomer to polymer and grafting efficiency slightly decreased with increasing reaction volumes. Quantity of grafted poly(methyl methacrylate) was calculated based on the integrated peak areas of the 1H-NMR spectra and quantitative analysis by extraction method. It was found that both techniques gave similar level of the grafted poly(methyl methacrylate) onto the natural rubber backbone. Furthermore, Mooney viscosities, glass transition temperature (Tg) and degradation temperature (Td) of the natural rubber and poly(methyl methacrylate) were slightly decreased with increasing the reaction volumes.","PeriodicalId":15644,"journal":{"name":"Journal of Elastomers and Plastics","volume":"130 1","pages":"17 - 34"},"PeriodicalIF":1.4000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Influence of Reaction Volume on the Properties of Natural Rubber-g-Methyl Methacrylate\",\"authors\":\"E. Kalkornsurapranee, K. Sahakaro, Azizon Kaesaman, C. Nakason\",\"doi\":\"10.1177/0095244309345410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graft copolymer of natural rubber and poly(methyl methacrylate) was prepared using CHP/TEPA redox initiators at 50°C and a reaction time of 3 h. Various reaction volumes (i.e., 0.5, 100, and 200 L) were used to prepare the graft copolymer which was then characterized by Fourier transform infrared spectrophotometer and proton nuclear magnetic resonance spectrophotometer (1H-NMR) techniques. It was found that conversion of monomer to polymer and grafting efficiency slightly decreased with increasing reaction volumes. Quantity of grafted poly(methyl methacrylate) was calculated based on the integrated peak areas of the 1H-NMR spectra and quantitative analysis by extraction method. It was found that both techniques gave similar level of the grafted poly(methyl methacrylate) onto the natural rubber backbone. Furthermore, Mooney viscosities, glass transition temperature (Tg) and degradation temperature (Td) of the natural rubber and poly(methyl methacrylate) were slightly decreased with increasing the reaction volumes.\",\"PeriodicalId\":15644,\"journal\":{\"name\":\"Journal of Elastomers and Plastics\",\"volume\":\"130 1\",\"pages\":\"17 - 34\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elastomers and Plastics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/0095244309345410\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers and Plastics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/0095244309345410","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

采用CHP/TEPA氧化还原引发剂,在50℃、3 h条件下制备天然橡胶与聚甲基丙烯酸甲酯的接枝共聚物。采用不同的反应体积(0.5、100、200 L)制备接枝共聚物,并用傅里叶变换红外分光光度计和质子核磁共振分光光度计(1H-NMR)技术对接枝共聚物进行了表征。结果表明,随着反应体积的增大,单体转化为聚合物的转化率和接枝效率略有下降。根据1H-NMR峰面积积分和萃取法定量分析,计算接枝聚甲基丙烯酸甲酯的数量。结果发现,这两种方法在天然橡胶骨架上接枝的聚甲基丙烯酸甲酯水平相似。随着反应体积的增大,天然橡胶和聚甲基丙烯酸甲酯的穆尼粘度、玻璃化转变温度(Tg)和降解温度(Td)均略有降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Reaction Volume on the Properties of Natural Rubber-g-Methyl Methacrylate
Graft copolymer of natural rubber and poly(methyl methacrylate) was prepared using CHP/TEPA redox initiators at 50°C and a reaction time of 3 h. Various reaction volumes (i.e., 0.5, 100, and 200 L) were used to prepare the graft copolymer which was then characterized by Fourier transform infrared spectrophotometer and proton nuclear magnetic resonance spectrophotometer (1H-NMR) techniques. It was found that conversion of monomer to polymer and grafting efficiency slightly decreased with increasing reaction volumes. Quantity of grafted poly(methyl methacrylate) was calculated based on the integrated peak areas of the 1H-NMR spectra and quantitative analysis by extraction method. It was found that both techniques gave similar level of the grafted poly(methyl methacrylate) onto the natural rubber backbone. Furthermore, Mooney viscosities, glass transition temperature (Tg) and degradation temperature (Td) of the natural rubber and poly(methyl methacrylate) were slightly decreased with increasing the reaction volumes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elastomers and Plastics
Journal of Elastomers and Plastics 工程技术-材料科学:综合
CiteScore
3.30
自引率
5.90%
发文量
41
审稿时长
6 months
期刊介绍: The Journal of Elastomers and Plastics is a high quality peer-reviewed journal which publishes original research on the development and marketing of elastomers and plastics and the area in between where the characteristics of both extremes are apparent. The journal covers: advances in chemistry, processing, properties and applications; new information on thermoplastic elastomers, reinforced elastomers, natural rubbers, blends and alloys, and fillers and additives.
期刊最新文献
Glycerol-treated polypropylene/carbon black nanocomposites: Analysis of electrical, rheological, thermal and mechanical properties Investigation of the usability of activated carbon as a filling material in nitrile butadiene rubber/natural rubber components and modeling by regression analysis Tensile creep behavior and structures of sisal fiber reinforced styrene butadiene thermoplastic elastomer/polystyrene composites Use of vegetable oils as an alternate to naphthenic oil for extension of emulsion styrene butadiene rubber Study on modified VAc-VeoVa10 latex prepared by soap-free emulsion polymerization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1