{"title":"齐次非交换电路的新下界","authors":"Prerona Chatterjee, Pavel Hrubevs","doi":"10.48550/arXiv.2301.01676","DOIUrl":null,"url":null,"abstract":"We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\\Omega(d/\\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\\Omega(nd)$, if $d\\leq n$, or $\\Omega(nd \\frac{\\log n}{\\log d})$, if $d\\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"58 1","pages":"13:1-13:10"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Lower Bounds against Homogeneous Non-Commutative Circuits\",\"authors\":\"Prerona Chatterjee, Pavel Hrubevs\",\"doi\":\"10.48550/arXiv.2301.01676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\\\\Omega(d/\\\\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\\\\Omega(nd)$, if $d\\\\leq n$, or $\\\\Omega(nd \\\\frac{\\\\log n}{\\\\log d})$, if $d\\\\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"58 1\",\"pages\":\"13:1-13:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.01676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Lower Bounds against Homogeneous Non-Commutative Circuits
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an explicit homogeneous bivariate polynomial of degree $d$ which requires homogeneous non-commutative circuit of size $\Omega(d/\log d)$. For an $n$-variate polynomial with $n>1$, the result can be improved to $\Omega(nd)$, if $d\leq n$, or $\Omega(nd \frac{\log n}{\log d})$, if $d\geq n$. Under the same assumptions, we also give a quadratic lower bound for the ordered version of the central symmetric polynomial.