乘积高阶模糊函数的统计分析

A. Scaglione, S. Barbarossa
{"title":"乘积高阶模糊函数的统计分析","authors":"A. Scaglione, S. Barbarossa","doi":"10.1109/18.746840","DOIUrl":null,"url":null,"abstract":"The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"138 1","pages":"343-356"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Statistical Analysis of the Product High-Order Ambiguity Function\",\"authors\":\"A. Scaglione, S. Barbarossa\",\"doi\":\"10.1109/18.746840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"138 1\",\"pages\":\"343-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.746840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

引入高阶模糊函数(HAF)对嵌入噪声中的多项式相位信号进行估计。由于HAF是一个非线性算子,它受到噪声掩蔽效应和不希望出现的交叉项的影响,并且可能在多分量(mc)信号存在时产生伪谐波。然后提出了产品HAF (PHAF),以提高HAF在噪声存在下的性能并解决模糊问题。在此通信中,我们导出了在高信噪比(SNR)和有限数量数据样本存在的加性高斯白噪声(AWGN)下的PHAF的统计分析。对单组分PPS进行了详细的分析,并对多组分PPS进行了讨论。明确考虑了基于相位函数的估计器递归结构中隐含的误差传播现象。通过单组分和多组分pps的仿真结果验证了分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Analysis of the Product High-Order Ambiguity Function
The high-order ambiguity function (HAF) was introduced for the estimation of polynomial-phase signals (PPS) embedded in noise. Since the HAF is a nonlinear operator, it suffers from noise-masking effects and from the appearance of undesired cross terms and, possibly, spurious harmonics in the presence of multicomponent (mc) signals. The product HAF (PHAF) was then proposed as a way to improve the performance of the HAF in the presence of noise and to solve the ambiguity problem. In this correspondence we derive a statistical analysis of the PHAF in the presence of additive white Gaussian noise (AWGN) valid for high signal-to-noise ratio (SNR) and a finite number of data samples. The analysis is carried out in detail for single-component PPS but the multicomponent case is also discussed. Error propagation phenomena implicit in the recursive structure of the PHAF-based estimator are explicitly taken into account. The analysis is validated by simulation results for both single- and multicomponent PPSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to "On the Separability of Parallel MISO Broadcast Channels Under Partial CSIT: A Degrees of Freedom Region Perspective" Efficiently Decoding Reed-Muller Codes From Random Errors Restricted q-Isometry Properties Adapted to Frames for Nonconvex lq-Analysis Distortion Rate Function of Sub-Nyquist Sampled Gaussian Sources ℓp-Regularized Least Squares (0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1