{"title":"重铬酸苯并咪唑氧化某些α-羟基酸反应动力学及相关性分析","authors":"D. Panday, Teena Kachawa, S. Kothari","doi":"10.3184/146867818X15319903829236","DOIUrl":null,"url":null,"abstract":"Kinetic and mechanistic studies of the oxidation of mandelic acid and nine monosubstituted mandelic acids by benzimidazolium dichromate (BIDC) in dimethyl sulfoxide are discussed with an emphasis on correlation of structure and reactivity. The reactions were of first order with respect to BIDC. However, Michaelis-Menten type kinetics were observed with respect to hydroxy acids. The reactions are catalysed by protons. The deuterium isotope effect for the oxidation of mandelic acid (kH/kD = 5.91 at 298 K) indicated an α-C-H bond cleavage in the rate-determining step. An analysis of the solvent effect showed that the role of cationsolvation is major. The reaction showed an excellent correlation with the Hammett σ values, the reaction constant being negative. Based on the kinetic data, analysis of the solvent effect and results of structure-reactivity correlation along with some non-kinetic parameters, a mechanism involving rate-determining oxidative decomposition of the complex through hydride-ion transfer via a cyclic transition state to give the corresponding oxoacid is suggested.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"6 1","pages":"300 - 314"},"PeriodicalIF":2.1000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kinetics and Correlation Analysis of Reactivity in the Oxidation of Some α-Hydroxy Acids by Benzimidazolium Dichromate\",\"authors\":\"D. Panday, Teena Kachawa, S. Kothari\",\"doi\":\"10.3184/146867818X15319903829236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic and mechanistic studies of the oxidation of mandelic acid and nine monosubstituted mandelic acids by benzimidazolium dichromate (BIDC) in dimethyl sulfoxide are discussed with an emphasis on correlation of structure and reactivity. The reactions were of first order with respect to BIDC. However, Michaelis-Menten type kinetics were observed with respect to hydroxy acids. The reactions are catalysed by protons. The deuterium isotope effect for the oxidation of mandelic acid (kH/kD = 5.91 at 298 K) indicated an α-C-H bond cleavage in the rate-determining step. An analysis of the solvent effect showed that the role of cationsolvation is major. The reaction showed an excellent correlation with the Hammett σ values, the reaction constant being negative. Based on the kinetic data, analysis of the solvent effect and results of structure-reactivity correlation along with some non-kinetic parameters, a mechanism involving rate-determining oxidative decomposition of the complex through hydride-ion transfer via a cyclic transition state to give the corresponding oxoacid is suggested.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"6 1\",\"pages\":\"300 - 314\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3184/146867818X15319903829236\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3184/146867818X15319903829236","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinetics and Correlation Analysis of Reactivity in the Oxidation of Some α-Hydroxy Acids by Benzimidazolium Dichromate
Kinetic and mechanistic studies of the oxidation of mandelic acid and nine monosubstituted mandelic acids by benzimidazolium dichromate (BIDC) in dimethyl sulfoxide are discussed with an emphasis on correlation of structure and reactivity. The reactions were of first order with respect to BIDC. However, Michaelis-Menten type kinetics were observed with respect to hydroxy acids. The reactions are catalysed by protons. The deuterium isotope effect for the oxidation of mandelic acid (kH/kD = 5.91 at 298 K) indicated an α-C-H bond cleavage in the rate-determining step. An analysis of the solvent effect showed that the role of cationsolvation is major. The reaction showed an excellent correlation with the Hammett σ values, the reaction constant being negative. Based on the kinetic data, analysis of the solvent effect and results of structure-reactivity correlation along with some non-kinetic parameters, a mechanism involving rate-determining oxidative decomposition of the complex through hydride-ion transfer via a cyclic transition state to give the corresponding oxoacid is suggested.