Guangsi Xiong, Ping Li, Hanlin Zeng, Hong Xiao, Wenjun Jiang
{"title":"基于三重网络的多轴工业机器人故障诊断模型","authors":"Guangsi Xiong, Ping Li, Hanlin Zeng, Hong Xiao, Wenjun Jiang","doi":"10.3233/jhs-222014","DOIUrl":null,"url":null,"abstract":"Fault diagnosis is an important link in intelligent development of industrial robots. Aiming at the problem of weak fault diagnosis performance caused by insufficient training samples, a fault diagnosis model based on triplet network is proposed. Firstly, we combine the multiscale convolutional neural network (MSCNN) with channel attention networks (squeeze-and-excitation network, SENet), and use it to construct a triple sub-network structure MS-SECNN, which can adaptively extract features from the original fault signal. Then, the feature similarity is calculated by triplet loss in the low dimensional space to realize the fault classification task. The experiments are based on the real industrial robot operation data set. In this model, we use Few-shot learning strategy to test the diagnostic performance under small samples, and compare it with WDCNN, FDCNN and MSCNN models. Experimental results show that the proposed model has more effective fault classification ability under small samples. In addition, when the training sample size is 1400, the average accuracy of MS-SECNN reaches 99.21%.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"53 1","pages":"75-83"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis model of multi-axis industrial robot based on triplet network\",\"authors\":\"Guangsi Xiong, Ping Li, Hanlin Zeng, Hong Xiao, Wenjun Jiang\",\"doi\":\"10.3233/jhs-222014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis is an important link in intelligent development of industrial robots. Aiming at the problem of weak fault diagnosis performance caused by insufficient training samples, a fault diagnosis model based on triplet network is proposed. Firstly, we combine the multiscale convolutional neural network (MSCNN) with channel attention networks (squeeze-and-excitation network, SENet), and use it to construct a triple sub-network structure MS-SECNN, which can adaptively extract features from the original fault signal. Then, the feature similarity is calculated by triplet loss in the low dimensional space to realize the fault classification task. The experiments are based on the real industrial robot operation data set. In this model, we use Few-shot learning strategy to test the diagnostic performance under small samples, and compare it with WDCNN, FDCNN and MSCNN models. Experimental results show that the proposed model has more effective fault classification ability under small samples. In addition, when the training sample size is 1400, the average accuracy of MS-SECNN reaches 99.21%.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"53 1\",\"pages\":\"75-83\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-222014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-222014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fault diagnosis model of multi-axis industrial robot based on triplet network
Fault diagnosis is an important link in intelligent development of industrial robots. Aiming at the problem of weak fault diagnosis performance caused by insufficient training samples, a fault diagnosis model based on triplet network is proposed. Firstly, we combine the multiscale convolutional neural network (MSCNN) with channel attention networks (squeeze-and-excitation network, SENet), and use it to construct a triple sub-network structure MS-SECNN, which can adaptively extract features from the original fault signal. Then, the feature similarity is calculated by triplet loss in the low dimensional space to realize the fault classification task. The experiments are based on the real industrial robot operation data set. In this model, we use Few-shot learning strategy to test the diagnostic performance under small samples, and compare it with WDCNN, FDCNN and MSCNN models. Experimental results show that the proposed model has more effective fault classification ability under small samples. In addition, when the training sample size is 1400, the average accuracy of MS-SECNN reaches 99.21%.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.