表面效应和参数激励下多铁热弹性纳米纤维中的声波传播

R. Selvamani, J. Rexy, Rajesh Kumar
{"title":"表面效应和参数激励下多铁热弹性纳米纤维中的声波传播","authors":"R. Selvamani, J. Rexy, Rajesh Kumar","doi":"10.22034/JSM.2019.1879155.1501","DOIUrl":null,"url":null,"abstract":"This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural direction. Graphs are drawn for frequency, phase velocity, piezoelectric strain, magnetic field and dynamic displacement at different vibration modes of Nanofibers. From the result obtained, it is seen that the surface effect and excitation frequency gives significant contribution to the physical variables of the Nanofiber. The frequency grows in the presence of surface effect and decay as length increases both in Euler’s and Timoshenko beam theory. Also, a comparison of numerical results is made with existing literature and good agreement is arrived. The present study is expected to be more helpful for the design of piezo-thermo-magneto-mechanical Nanofiber-based devices.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"98 1","pages":"493-504"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation\",\"authors\":\"R. Selvamani, J. Rexy, Rajesh Kumar\",\"doi\":\"10.22034/JSM.2019.1879155.1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural direction. Graphs are drawn for frequency, phase velocity, piezoelectric strain, magnetic field and dynamic displacement at different vibration modes of Nanofibers. From the result obtained, it is seen that the surface effect and excitation frequency gives significant contribution to the physical variables of the Nanofiber. The frequency grows in the presence of surface effect and decay as length increases both in Euler’s and Timoshenko beam theory. Also, a comparison of numerical results is made with existing literature and good agreement is arrived. The present study is expected to be more helpful for the design of piezo-thermo-magneto-mechanical Nanofiber-based devices.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"98 1\",\"pages\":\"493-504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2019.1879155.1501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.1879155.1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用光束方程的Timoshenko形式,研究了多铁热弹性纳米纤维在表面效应和参数激励作用下的声波传播。通过剪切和旋转效应,得到了纳米纤维的解析模型方程。通过弯曲方向上的耦合时谐方程得到了问题的解。绘制了纳米纤维在不同振动模式下的频率、相速度、压电应变、磁场和动位移曲线。结果表明,表面效应和激发频率对纳米纤维的物理参数有重要影响。在Euler和Timoshenko光束理论中,频率在存在表面效应的情况下增加,随着长度的增加而衰减。并将数值计算结果与已有文献进行了比较,得到了较好的一致性。本文的研究对基于纳米纤维的压电-热-磁-机械器件的设计有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound Wave Propagation in a Multiferroic Thermo Elastic Nano Fiber Under the Influence of Surface Effect and Parametric Excitation
This study investigates that the sound wave propagation of multiferroic thermo elastic Nanofibers under the influence of surface effect and parametric excitation via Timoshenko form of beam equations. The equation of analytical model is obtained for Nanofiber through shear and rotation effect. The solution of the problem is reached through the coupled time harmonic equations in flexural direction. Graphs are drawn for frequency, phase velocity, piezoelectric strain, magnetic field and dynamic displacement at different vibration modes of Nanofibers. From the result obtained, it is seen that the surface effect and excitation frequency gives significant contribution to the physical variables of the Nanofiber. The frequency grows in the presence of surface effect and decay as length increases both in Euler’s and Timoshenko beam theory. Also, a comparison of numerical results is made with existing literature and good agreement is arrived. The present study is expected to be more helpful for the design of piezo-thermo-magneto-mechanical Nanofiber-based devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1