基于加权局部结构信息的线性判别分析

Raywut Ketsuwan, P. Padungweang
{"title":"基于加权局部结构信息的线性判别分析","authors":"Raywut Ketsuwan, P. Padungweang","doi":"10.1109/JCSSE.2017.8025907","DOIUrl":null,"url":null,"abstract":"The linear discriminant analysis (LDA) is one of the most efficient supervised dimensionality reduction technique widely used in face recognition. This paper proposed a new weighted LDA to improve the performance of the discriminant analysis. Confusable pair of classes is considered as the primary goal in our objective function. The proposed technique not only improves the minimization of the within-class scatter, but also improves the maximization of the between classes scatter to extract better discriminant feature subset. The experimental results a real word dataset demonstrate that the proposed method achieve higher recognition rate than that traditional LDA as well as other weighted LDA.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A linear discriminant analysis using weighted local structure information\",\"authors\":\"Raywut Ketsuwan, P. Padungweang\",\"doi\":\"10.1109/JCSSE.2017.8025907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear discriminant analysis (LDA) is one of the most efficient supervised dimensionality reduction technique widely used in face recognition. This paper proposed a new weighted LDA to improve the performance of the discriminant analysis. Confusable pair of classes is considered as the primary goal in our objective function. The proposed technique not only improves the minimization of the within-class scatter, but also improves the maximization of the between classes scatter to extract better discriminant feature subset. The experimental results a real word dataset demonstrate that the proposed method achieve higher recognition rate than that traditional LDA as well as other weighted LDA.\",\"PeriodicalId\":6460,\"journal\":{\"name\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"4 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2017.8025907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性判别分析(LDA)是目前广泛应用于人脸识别的最有效的监督降维技术之一。为了提高判别分析的性能,本文提出了一种新的加权LDA。在我们的目标函数中,可混淆的类对被认为是主要目标。该方法不仅提高了类内散点的最小化,而且提高了类间散点的最大化,从而提取出更好的判别特征子集。在真实单词数据集上的实验结果表明,该方法比传统LDA和其他加权LDA具有更高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A linear discriminant analysis using weighted local structure information
The linear discriminant analysis (LDA) is one of the most efficient supervised dimensionality reduction technique widely used in face recognition. This paper proposed a new weighted LDA to improve the performance of the discriminant analysis. Confusable pair of classes is considered as the primary goal in our objective function. The proposed technique not only improves the minimization of the within-class scatter, but also improves the maximization of the between classes scatter to extract better discriminant feature subset. The experimental results a real word dataset demonstrate that the proposed method achieve higher recognition rate than that traditional LDA as well as other weighted LDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1