基于递归神经网络的短期负荷预测

S. Mishra, S. K. Patra
{"title":"基于递归神经网络的短期负荷预测","authors":"S. Mishra, S. K. Patra","doi":"10.1109/TENCON.2008.4766829","DOIUrl":null,"url":null,"abstract":"Short term load forecasting is essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of power system. Neural networks (NNs) have powerful nonlinear mapping capabilities. Therefore, they have been used to deal with predicting, in which the conventional methods fail to give satisfactory results. A novel recurrent neural network (RNN) is proposed in this paper. Many types of computational intelligent methods are available for time series prediction. The novelty of this RNN lies in the usage of neurons instead of simple feedback loops for temporal relations. There is flexibility to use any type of activation functions in both feed forward and feedback loops. Number of hidden neurons can be changed on case to case basis for maximum accuracy. The performance of the RNN is demonstrated to be better than several other computational intelligent methods available.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":"206 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Short term load forecasting using a novel recurrent neural network\",\"authors\":\"S. Mishra, S. K. Patra\",\"doi\":\"10.1109/TENCON.2008.4766829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short term load forecasting is essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of power system. Neural networks (NNs) have powerful nonlinear mapping capabilities. Therefore, they have been used to deal with predicting, in which the conventional methods fail to give satisfactory results. A novel recurrent neural network (RNN) is proposed in this paper. Many types of computational intelligent methods are available for time series prediction. The novelty of this RNN lies in the usage of neurons instead of simple feedback loops for temporal relations. There is flexibility to use any type of activation functions in both feed forward and feedback loops. Number of hidden neurons can be changed on case to case basis for maximum accuracy. The performance of the RNN is demonstrated to be better than several other computational intelligent methods available.\",\"PeriodicalId\":22230,\"journal\":{\"name\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"volume\":\"206 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2008 - 2008 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2008.4766829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

短期负荷预测对电力公司的运行至关重要。提高了电力系统的节能可靠运行。神经网络具有强大的非线性映射能力。因此,它们被用于处理传统方法不能给出满意结果的预测。提出了一种新的递归神经网络(RNN)。时间序列预测的计算智能方法有很多种。这种RNN的新颖之处在于使用神经元而不是简单的反馈回路来处理时间关系。在前馈和反馈循环中都可以灵活地使用任何类型的激活函数。隐藏神经元的数量可以根据具体情况改变,以获得最大的准确性。结果表明,该方法的性能优于其他几种计算智能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short term load forecasting using a novel recurrent neural network
Short term load forecasting is essential to the operation of electricity companies. It enhances the energy-efficient and reliable operation of power system. Neural networks (NNs) have powerful nonlinear mapping capabilities. Therefore, they have been used to deal with predicting, in which the conventional methods fail to give satisfactory results. A novel recurrent neural network (RNN) is proposed in this paper. Many types of computational intelligent methods are available for time series prediction. The novelty of this RNN lies in the usage of neurons instead of simple feedback loops for temporal relations. There is flexibility to use any type of activation functions in both feed forward and feedback loops. Number of hidden neurons can be changed on case to case basis for maximum accuracy. The performance of the RNN is demonstrated to be better than several other computational intelligent methods available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measured impedance by distance relay for inter phase faults in presence of SSSC on a double circuit transmission line A parallel architecture for successive elimination block matching algorithm An RNS based transform architecture for H.264/AVC Routing protocol enhancement for handling node mobility in wireless sensor networks MPEG-21-based scalable bitstream adaptation using medium grain scalability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1