低碳、无杆人工举升在低产量、低渗透油田的应用

Zhu Shijia, Derong Lei, Liu He, Zhongxian Hao, Lixin Zhang
{"title":"低碳、无杆人工举升在低产量、低渗透油田的应用","authors":"Zhu Shijia, Derong Lei, Liu He, Zhongxian Hao, Lixin Zhang","doi":"10.2118/192071-MS","DOIUrl":null,"url":null,"abstract":"\n The development of a new low-carbon operation mode of artificial lift in high-water-cut oilfields, is significant for reducing energy consumption, improving operation efficiency and lowering production costs of oilfields. The annual electric consumption of the oilfield is increasing year by year. In 2016, the total electric consumption exceeded 35 billion kWh, of which the mechanical production system accounts for 57%.\n The rodless artificial lift eliminates the use of the sucker rod, and reduces the installed motor power over 50%. The electric consumption is greatly decreased, while tremendous gain is seen in the system efficiency. Moreover, the application performance is especially good for low-production wells. Under such circumstances, the operation cost of the oilfield declines. The current rodless artificial lift is basically based on two types of pumps, namely submersible plunger pump and submersible direct-drive screw pump.\n The submersible plunger pump lifts liquid via vertical reciprocation of the moving body driven by the motor, with daily electric consumption of an individual well decreasing by 46%, from 133.4 kWh to 72.5 kWh. The reduced annual electric cost per well is RMB 14,000, and the annual single-well carbon emission falls by 17.5 tons. As for the submersible direct-drive screw pump, the rotation of the pump is directly motivated by the downhole submersible motor, through which the downhole liquid is elevated to the surface. The daily electric consumption of an individual well decreases by 38.4%, from 224kWh to 138kWh, contributing to the annual electric cost reduction per well of RMB 13,600 and annual carbon emission decline per well of 17.1 tons.\n The application of the two types of rodless artificial lift has taken initial shape. The submersible plunger pump has been applied to over 200 wells, and the submersible direct-drive screw pump, over 60 wells. The new low-carbon operation mode of artificial lift is critical for the energy saving, efficiency improvement and consequent cost reduction of oilfields, particularly in cases of the industry downturn triggered by low oil prices.","PeriodicalId":11182,"journal":{"name":"Day 3 Thu, October 25, 2018","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Low-Carbon, Rodless Artificial Lift in Low-Production, Low-Permeability Oilfields\",\"authors\":\"Zhu Shijia, Derong Lei, Liu He, Zhongxian Hao, Lixin Zhang\",\"doi\":\"10.2118/192071-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of a new low-carbon operation mode of artificial lift in high-water-cut oilfields, is significant for reducing energy consumption, improving operation efficiency and lowering production costs of oilfields. The annual electric consumption of the oilfield is increasing year by year. In 2016, the total electric consumption exceeded 35 billion kWh, of which the mechanical production system accounts for 57%.\\n The rodless artificial lift eliminates the use of the sucker rod, and reduces the installed motor power over 50%. The electric consumption is greatly decreased, while tremendous gain is seen in the system efficiency. Moreover, the application performance is especially good for low-production wells. Under such circumstances, the operation cost of the oilfield declines. The current rodless artificial lift is basically based on two types of pumps, namely submersible plunger pump and submersible direct-drive screw pump.\\n The submersible plunger pump lifts liquid via vertical reciprocation of the moving body driven by the motor, with daily electric consumption of an individual well decreasing by 46%, from 133.4 kWh to 72.5 kWh. The reduced annual electric cost per well is RMB 14,000, and the annual single-well carbon emission falls by 17.5 tons. As for the submersible direct-drive screw pump, the rotation of the pump is directly motivated by the downhole submersible motor, through which the downhole liquid is elevated to the surface. The daily electric consumption of an individual well decreases by 38.4%, from 224kWh to 138kWh, contributing to the annual electric cost reduction per well of RMB 13,600 and annual carbon emission decline per well of 17.1 tons.\\n The application of the two types of rodless artificial lift has taken initial shape. The submersible plunger pump has been applied to over 200 wells, and the submersible direct-drive screw pump, over 60 wells. The new low-carbon operation mode of artificial lift is critical for the energy saving, efficiency improvement and consequent cost reduction of oilfields, particularly in cases of the industry downturn triggered by low oil prices.\",\"PeriodicalId\":11182,\"journal\":{\"name\":\"Day 3 Thu, October 25, 2018\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 25, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/192071-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 25, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192071-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

开发高含水油田人工举升低碳作业新模式,对降低油田能耗、提高作业效率、降低生产成本具有重要意义。油田年用电量逐年增加。2016年总用电量超过350亿千瓦时,其中机械生产系统占57%。无杆人工举升消除了抽油杆的使用,并将安装的电机功率降低了50%以上。在大幅度降低耗电量的同时,系统效率也得到了极大的提高。在低产井中应用效果特别好。在这种情况下,油田的运营成本下降。目前的无杆人工举升基本上是基于两种类型的泵,即潜水柱塞泵和潜水直驱螺杆泵。潜水柱塞泵通过电机驱动的运动体垂直往复举升液体,单井日用电量从133.4 kWh降至72.5 kWh,降低了46%。单井年减少电费1.4万元,单井年减少碳排放17.5吨。对于潜式直驱螺杆泵,泵的旋转由井下潜式电机直接驱动,通过井下电机将井下液体提升到地面。单井日用电量下降38.4%,由224千瓦时降至138千瓦时,每年每井降低电费1.36万元,每年每井减少碳排放17.1吨。两种无杆人工举升的应用已初具规模。潜式柱塞泵已应用于200多口井,潜式直驱螺杆泵已应用于60多口井。人工举升这种新型的低碳作业模式对于油田节能、提高效率和降低成本至关重要,尤其是在低油价引发行业低迷的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Low-Carbon, Rodless Artificial Lift in Low-Production, Low-Permeability Oilfields
The development of a new low-carbon operation mode of artificial lift in high-water-cut oilfields, is significant for reducing energy consumption, improving operation efficiency and lowering production costs of oilfields. The annual electric consumption of the oilfield is increasing year by year. In 2016, the total electric consumption exceeded 35 billion kWh, of which the mechanical production system accounts for 57%. The rodless artificial lift eliminates the use of the sucker rod, and reduces the installed motor power over 50%. The electric consumption is greatly decreased, while tremendous gain is seen in the system efficiency. Moreover, the application performance is especially good for low-production wells. Under such circumstances, the operation cost of the oilfield declines. The current rodless artificial lift is basically based on two types of pumps, namely submersible plunger pump and submersible direct-drive screw pump. The submersible plunger pump lifts liquid via vertical reciprocation of the moving body driven by the motor, with daily electric consumption of an individual well decreasing by 46%, from 133.4 kWh to 72.5 kWh. The reduced annual electric cost per well is RMB 14,000, and the annual single-well carbon emission falls by 17.5 tons. As for the submersible direct-drive screw pump, the rotation of the pump is directly motivated by the downhole submersible motor, through which the downhole liquid is elevated to the surface. The daily electric consumption of an individual well decreases by 38.4%, from 224kWh to 138kWh, contributing to the annual electric cost reduction per well of RMB 13,600 and annual carbon emission decline per well of 17.1 tons. The application of the two types of rodless artificial lift has taken initial shape. The submersible plunger pump has been applied to over 200 wells, and the submersible direct-drive screw pump, over 60 wells. The new low-carbon operation mode of artificial lift is critical for the energy saving, efficiency improvement and consequent cost reduction of oilfields, particularly in cases of the industry downturn triggered by low oil prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete Net-to-Gross Truncated Gaussian Simulation: An Alternative Modelling Approach for CSG Unconventional Reservoirs, Bowen Basin, Eastern Australia Where the Laterals Go? A Feasible Way for the Trajectory Measurement of Radial Jet Drilling Wells Embracing Opportunities and Avoiding Pitfalls of Probabilistic Modelling in Field Development Planning Efficient Integration Method of Large-Scale Reservoir Compaction and Small-Scale Casing Stability Models for Oilfield Casing Failure Analysis Monitoring Water Flood Front Movement by Propagating High Frequency Pulses Through Subsurface Transmission Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1