J. Yli-Kaakinen, Toni Levanen, M. Renfors, M. Valkama
{"title":"5G快速卷积滤波ofdm处理优化","authors":"J. Yli-Kaakinen, Toni Levanen, M. Renfors, M. Valkama","doi":"10.1109/EuCNC.2017.7980709","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of flexible fast-convolution (FC) filtering scheme for multiplexing orthogonal frequency-division multiplexing (OFDM) physical resource blocks (PRBs) in a spectrally well-localized manner. This scheme is able to suppress interference leakage between adjacent PRBs, thus supporting independent waveform parametrization and numerologies for different PRBs, as well as asynchronous multiuser operation. These are considered as important features in the 5G waveform development. This contribution focuses on optimizing FC based OFDM transmultiplexers such that the in-band interference is minimized subject to the given out-of-band emission constraint. The performance of the optimized designs is demonstrated using resource block groups (RBGs) of different sizes and with various design parameters. The proposed scheme has great flexibility in tuning the filtering bandwidths dynamically according the resource allocation to different users with different requirements regarding the OFDM waveform numerology. Also the computational complexity is competitive with existing time-domain windowing approaches and becomes superior when the number of filtering bands is increased.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimized fast convolution based filtered-OFDM processing for 5G\",\"authors\":\"J. Yli-Kaakinen, Toni Levanen, M. Renfors, M. Valkama\",\"doi\":\"10.1109/EuCNC.2017.7980709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of flexible fast-convolution (FC) filtering scheme for multiplexing orthogonal frequency-division multiplexing (OFDM) physical resource blocks (PRBs) in a spectrally well-localized manner. This scheme is able to suppress interference leakage between adjacent PRBs, thus supporting independent waveform parametrization and numerologies for different PRBs, as well as asynchronous multiuser operation. These are considered as important features in the 5G waveform development. This contribution focuses on optimizing FC based OFDM transmultiplexers such that the in-band interference is minimized subject to the given out-of-band emission constraint. The performance of the optimized designs is demonstrated using resource block groups (RBGs) of different sizes and with various design parameters. The proposed scheme has great flexibility in tuning the filtering bandwidths dynamically according the resource allocation to different users with different requirements regarding the OFDM waveform numerology. Also the computational complexity is competitive with existing time-domain windowing approaches and becomes superior when the number of filtering bands is increased.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"7 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized fast convolution based filtered-OFDM processing for 5G
This paper investigates the application of flexible fast-convolution (FC) filtering scheme for multiplexing orthogonal frequency-division multiplexing (OFDM) physical resource blocks (PRBs) in a spectrally well-localized manner. This scheme is able to suppress interference leakage between adjacent PRBs, thus supporting independent waveform parametrization and numerologies for different PRBs, as well as asynchronous multiuser operation. These are considered as important features in the 5G waveform development. This contribution focuses on optimizing FC based OFDM transmultiplexers such that the in-band interference is minimized subject to the given out-of-band emission constraint. The performance of the optimized designs is demonstrated using resource block groups (RBGs) of different sizes and with various design parameters. The proposed scheme has great flexibility in tuning the filtering bandwidths dynamically according the resource allocation to different users with different requirements regarding the OFDM waveform numerology. Also the computational complexity is competitive with existing time-domain windowing approaches and becomes superior when the number of filtering bands is increased.