{"title":"基于超图的智能产品服务系统知识表示模型","authors":"Wang Zuoxu, Li Xinyu, Chen Chun-hsien, Zheng Pai","doi":"10.1115/detc2021-66732","DOIUrl":null,"url":null,"abstract":"\n In the trend of digital servitization, manufacturing companies have been transforming their business paradigms to Smart product-service systems (Smart PSS) by integrating products and associated services as bundles. To support the knowledge-intensive process of Smart PSS development, massive domain knowledge should be well-organized and reused. However, due to the existence of non-binary relations caused by product-service bundles (PSB) and context-awareness concerns in the Smart PSS development activities, conventional graph-based approaches for knowledge representation may lose essential information in transforming non-binary relations into binary ones, and hence cause incorrect results in the subsequent knowledge queries. To mitigate this problem, a hypergraph-based knowledge representation model for Smart PSS was proposed, which represents the non-binary relations among multiple entities with hyperedges. Technically, the knowledge source and the typical hyperedge schema in Smart PSS development are identified in this paper. A detailed case study in the scenarios of 3D printing troubleshooting and PSB recommendation was conducted to showcase the proposed hypergraph-based knowledge representation model and demonstrate its validity. The results show that the hypergraph-based knowledge model significantly relieves the sparsity in the ordinary KG by adding multiple hyperedges. It is anticipated that the proposed hypergraph knowledge representation model can serve as a fundamental study for further knowledge reasoning activities.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hypergraph-Based Knowledge Representation Model for Smart Product-Service System Development\",\"authors\":\"Wang Zuoxu, Li Xinyu, Chen Chun-hsien, Zheng Pai\",\"doi\":\"10.1115/detc2021-66732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the trend of digital servitization, manufacturing companies have been transforming their business paradigms to Smart product-service systems (Smart PSS) by integrating products and associated services as bundles. To support the knowledge-intensive process of Smart PSS development, massive domain knowledge should be well-organized and reused. However, due to the existence of non-binary relations caused by product-service bundles (PSB) and context-awareness concerns in the Smart PSS development activities, conventional graph-based approaches for knowledge representation may lose essential information in transforming non-binary relations into binary ones, and hence cause incorrect results in the subsequent knowledge queries. To mitigate this problem, a hypergraph-based knowledge representation model for Smart PSS was proposed, which represents the non-binary relations among multiple entities with hyperedges. Technically, the knowledge source and the typical hyperedge schema in Smart PSS development are identified in this paper. A detailed case study in the scenarios of 3D printing troubleshooting and PSB recommendation was conducted to showcase the proposed hypergraph-based knowledge representation model and demonstrate its validity. The results show that the hypergraph-based knowledge model significantly relieves the sparsity in the ordinary KG by adding multiple hyperedges. It is anticipated that the proposed hypergraph knowledge representation model can serve as a fundamental study for further knowledge reasoning activities.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-66732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-66732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hypergraph-Based Knowledge Representation Model for Smart Product-Service System Development
In the trend of digital servitization, manufacturing companies have been transforming their business paradigms to Smart product-service systems (Smart PSS) by integrating products and associated services as bundles. To support the knowledge-intensive process of Smart PSS development, massive domain knowledge should be well-organized and reused. However, due to the existence of non-binary relations caused by product-service bundles (PSB) and context-awareness concerns in the Smart PSS development activities, conventional graph-based approaches for knowledge representation may lose essential information in transforming non-binary relations into binary ones, and hence cause incorrect results in the subsequent knowledge queries. To mitigate this problem, a hypergraph-based knowledge representation model for Smart PSS was proposed, which represents the non-binary relations among multiple entities with hyperedges. Technically, the knowledge source and the typical hyperedge schema in Smart PSS development are identified in this paper. A detailed case study in the scenarios of 3D printing troubleshooting and PSB recommendation was conducted to showcase the proposed hypergraph-based knowledge representation model and demonstrate its validity. The results show that the hypergraph-based knowledge model significantly relieves the sparsity in the ordinary KG by adding multiple hyperedges. It is anticipated that the proposed hypergraph knowledge representation model can serve as a fundamental study for further knowledge reasoning activities.