Okeolu Samuel Omogoye, A. B. Ogundare, I. O. Akanji
{"title":"开发一种具有成本效益的太阳能/柴油独立电站","authors":"Okeolu Samuel Omogoye, A. B. Ogundare, I. O. Akanji","doi":"10.1155/2015/828745","DOIUrl":null,"url":null,"abstract":"The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS) and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"25 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Development of a Cost-Effective Solar/Diesel Independent Power Plant for a Remote Station\",\"authors\":\"Okeolu Samuel Omogoye, A. B. Ogundare, I. O. Akanji\",\"doi\":\"10.1155/2015/828745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS) and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"25 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/828745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/828745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Cost-Effective Solar/Diesel Independent Power Plant for a Remote Station
The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS) and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.