用于视频理解的时间导向高斯注意

Shagan Sah, Thang Nguyen, Miguel Domínguez, F. Such, R. Ptucha
{"title":"用于视频理解的时间导向高斯注意","authors":"Shagan Sah, Thang Nguyen, Miguel Domínguez, F. Such, R. Ptucha","doi":"10.1109/CVPRW.2017.274","DOIUrl":null,"url":null,"abstract":"Recent advances in video understanding are enabling incredible developments in video search, summarization, automatic captioning and human computer interaction. Attention mechanisms are a powerful way to steer focus onto different sections of the video. Existing mechanisms are driven by prior training probabilities and require input instances of identical temporal duration. We introduce an intuitive video understanding framework which combines continuous attention mechanisms over a family of Gaussian distributions with a hierarchical based video representation. The hierarchical framework enables efficient abstract temporal representations of video. Video attributes steer the attention mechanism intelligently independent of video length. Our fully learnable end-to-end approach helps predict salient temporal regions of action/objects in the video. We demonstrate state-of-the-art captioning results on the popular MSVD, MSR-VTT and M-VAD video datasets.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"64 1","pages":"2208-2216"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temporally Steered Gaussian Attention for Video Understanding\",\"authors\":\"Shagan Sah, Thang Nguyen, Miguel Domínguez, F. Such, R. Ptucha\",\"doi\":\"10.1109/CVPRW.2017.274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in video understanding are enabling incredible developments in video search, summarization, automatic captioning and human computer interaction. Attention mechanisms are a powerful way to steer focus onto different sections of the video. Existing mechanisms are driven by prior training probabilities and require input instances of identical temporal duration. We introduce an intuitive video understanding framework which combines continuous attention mechanisms over a family of Gaussian distributions with a hierarchical based video representation. The hierarchical framework enables efficient abstract temporal representations of video. Video attributes steer the attention mechanism intelligently independent of video length. Our fully learnable end-to-end approach helps predict salient temporal regions of action/objects in the video. We demonstrate state-of-the-art captioning results on the popular MSVD, MSR-VTT and M-VAD video datasets.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"64 1\",\"pages\":\"2208-2216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视频理解的最新进展使视频搜索、摘要、自动字幕和人机交互取得了令人难以置信的发展。注意机制是一种强大的方法,可以将注意力引导到视频的不同部分。现有的机制是由先验训练概率驱动的,并且需要相同时间持续时间的输入实例。我们引入了一个直观的视频理解框架,它结合了高斯分布家族上的连续关注机制和基于层次的视频表示。分层框架实现了视频的高效抽象时间表示。视频属性独立于视频长度,智能地引导注意力机制。我们完全可学习的端到端方法有助于预测视频中动作/对象的显著时间区域。我们在流行的MSVD, MSR-VTT和M-VAD视频数据集上展示了最先进的字幕结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporally Steered Gaussian Attention for Video Understanding
Recent advances in video understanding are enabling incredible developments in video search, summarization, automatic captioning and human computer interaction. Attention mechanisms are a powerful way to steer focus onto different sections of the video. Existing mechanisms are driven by prior training probabilities and require input instances of identical temporal duration. We introduce an intuitive video understanding framework which combines continuous attention mechanisms over a family of Gaussian distributions with a hierarchical based video representation. The hierarchical framework enables efficient abstract temporal representations of video. Video attributes steer the attention mechanism intelligently independent of video length. Our fully learnable end-to-end approach helps predict salient temporal regions of action/objects in the video. We demonstrate state-of-the-art captioning results on the popular MSVD, MSR-VTT and M-VAD video datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1