{"title":"基于时间序列分析的多尺度数据融合算法设计","authors":"Chunxia Wang","doi":"10.14257/IJDTA.2016.9.12.09","DOIUrl":null,"url":null,"abstract":"Time series is an indicator at different times on different values, arranged in chronological sequence. The basic idea of the multi-scale analysis by orthogonal transformation, and it is such as wavelet transform signal decomposition analysis on different scales. The timing analysis method is achieved through the model method. The process parameters of the dynamic data time-domain analysis method is a parametric model to fit the observed data, and then use this model to analyze the observational data and produce data system. The paper presents the design of the multi-scale data fusion algorithm based on time series analysis. Finally, the advantages of the new algorithm are elaborated from the estimation accuracy and simulation demonstrated the effectiveness of the new algorithm.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"84 1","pages":"89-100"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design of the Multi-Scale Data Fusion Algorithm Based on Time Series Analysis\",\"authors\":\"Chunxia Wang\",\"doi\":\"10.14257/IJDTA.2016.9.12.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series is an indicator at different times on different values, arranged in chronological sequence. The basic idea of the multi-scale analysis by orthogonal transformation, and it is such as wavelet transform signal decomposition analysis on different scales. The timing analysis method is achieved through the model method. The process parameters of the dynamic data time-domain analysis method is a parametric model to fit the observed data, and then use this model to analyze the observational data and produce data system. The paper presents the design of the multi-scale data fusion algorithm based on time series analysis. Finally, the advantages of the new algorithm are elaborated from the estimation accuracy and simulation demonstrated the effectiveness of the new algorithm.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"84 1\",\"pages\":\"89-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJDTA.2016.9.12.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2016.9.12.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Design of the Multi-Scale Data Fusion Algorithm Based on Time Series Analysis
Time series is an indicator at different times on different values, arranged in chronological sequence. The basic idea of the multi-scale analysis by orthogonal transformation, and it is such as wavelet transform signal decomposition analysis on different scales. The timing analysis method is achieved through the model method. The process parameters of the dynamic data time-domain analysis method is a parametric model to fit the observed data, and then use this model to analyze the observational data and produce data system. The paper presents the design of the multi-scale data fusion algorithm based on time series analysis. Finally, the advantages of the new algorithm are elaborated from the estimation accuracy and simulation demonstrated the effectiveness of the new algorithm.