{"title":"基于嵌入标记点处理框架的分层图像内容分析","authors":"C. Benedek","doi":"10.1109/ICASSP.2014.6854576","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"42 1","pages":"5110-5114"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical image content analysis with an embedded marked point process framework\",\"authors\":\"C. Benedek\",\"doi\":\"10.1109/ICASSP.2014.6854576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"42 1\",\"pages\":\"5110-5114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical image content analysis with an embedded marked point process framework
In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images. The proposed framework extends conventional Marked Point Process models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups. The proposed method is demonstrated in three application areas: optical circuit inspection, built in area analysis in aerial images, and traffic monitoring on airborne Lidar data.