M. Franceschetti, Roberto Posenato, Carlo Combi, Johann Eder
{"title":"参数化CSTNUs的动态可控性","authors":"M. Franceschetti, Roberto Posenato, Carlo Combi, Johann Eder","doi":"10.1145/3555776.3577618","DOIUrl":null,"url":null,"abstract":"A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints parameters. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"52 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Controllability of Parameterized CSTNUs\",\"authors\":\"M. Franceschetti, Roberto Posenato, Carlo Combi, Johann Eder\",\"doi\":\"10.1145/3555776.3577618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints parameters. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure.\",\"PeriodicalId\":42971,\"journal\":{\"name\":\"Applied Computing Review\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555776.3577618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints parameters. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure.