Nialah Jenae Wilson-Small, D. Goedicke, Kirstin H. Petersen, Shiri Azenkot
{"title":"无人机教师:设计物理人机交互的运动指令","authors":"Nialah Jenae Wilson-Small, D. Goedicke, Kirstin H. Petersen, Shiri Azenkot","doi":"10.1145/3568162.3576985","DOIUrl":null,"url":null,"abstract":"Drones (micro unmanned aerial vehicles) are becoming more prevalent in applications that bring them into close human spaces. This is made possible in part by clear drone-to-human communication strategies. However, current auditory and visual communication methods only work with strict environmental settings. To continue expanding the possibilities for drones to be useful in human spaces, we explore ways to overcome these limitations through physical touch. We present a new application for drones--physical instructive feedback. To do this we designed three different physical interaction modes for a drone. We then conducted a user study (N=12) to answer fundamental questions of where and how people want to physically interact with drones, and what people naturally infer the physical touch is communicating. We then used these insights to conduct a second user study (N=14) to understand the best way for a drone to communicate instructions to a human in a movement task. We found that continuous physical feedback is both the preferred mode and is more effective at providing instruction than incremental feedback.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"32 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Drone Teacher: Designing Physical Human-Drone Interactions for Movement Instruction\",\"authors\":\"Nialah Jenae Wilson-Small, D. Goedicke, Kirstin H. Petersen, Shiri Azenkot\",\"doi\":\"10.1145/3568162.3576985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones (micro unmanned aerial vehicles) are becoming more prevalent in applications that bring them into close human spaces. This is made possible in part by clear drone-to-human communication strategies. However, current auditory and visual communication methods only work with strict environmental settings. To continue expanding the possibilities for drones to be useful in human spaces, we explore ways to overcome these limitations through physical touch. We present a new application for drones--physical instructive feedback. To do this we designed three different physical interaction modes for a drone. We then conducted a user study (N=12) to answer fundamental questions of where and how people want to physically interact with drones, and what people naturally infer the physical touch is communicating. We then used these insights to conduct a second user study (N=14) to understand the best way for a drone to communicate instructions to a human in a movement task. We found that continuous physical feedback is both the preferred mode and is more effective at providing instruction than incremental feedback.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568162.3576985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568162.3576985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
A Drone Teacher: Designing Physical Human-Drone Interactions for Movement Instruction
Drones (micro unmanned aerial vehicles) are becoming more prevalent in applications that bring them into close human spaces. This is made possible in part by clear drone-to-human communication strategies. However, current auditory and visual communication methods only work with strict environmental settings. To continue expanding the possibilities for drones to be useful in human spaces, we explore ways to overcome these limitations through physical touch. We present a new application for drones--physical instructive feedback. To do this we designed three different physical interaction modes for a drone. We then conducted a user study (N=12) to answer fundamental questions of where and how people want to physically interact with drones, and what people naturally infer the physical touch is communicating. We then used these insights to conduct a second user study (N=14) to understand the best way for a drone to communicate instructions to a human in a movement task. We found that continuous physical feedback is both the preferred mode and is more effective at providing instruction than incremental feedback.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.