一种新的可解释的定量交易选股算法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2022-01-01 DOI:10.4018/ijghpc.301589
Zhengrui Li, Weiwei Lin, James Z. Wang, Peng Peng, Jianpeng Lin, Victor I. Chang, Jianghu Pan
{"title":"一种新的可解释的定量交易选股算法","authors":"Zhengrui Li, Weiwei Lin, James Z. Wang, Peng Peng, Jianpeng Lin, Victor I. Chang, Jianghu Pan","doi":"10.4018/ijghpc.301589","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning models have exhibited remarkable performance in the fourth industrial revolution. However, especially in the field of stock forecasting, most of the existing models demonstrate either relatively weak interpretability or unsatisfactory performance. This paper proposes an interpretable stock selection algorithm(ISSA) to achieve accurate prediction results and high interpretability for stock selection. The excellent performance of ISSA lies in its integration of the learning to rank algorithm LambdaMART with the SHapley Additive exPlanations (SHAP) interpretation method. Performance evaluation over the Shanghai Stock Exchange A-share market shows that ISSA outperforms regression and classification models in stock selection performance. Our results also demonstrate that our proposed ISSA solution can effectively filter out the most impactful features, potentially used for investment strategy.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"23 1","pages":"1-19"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Interpretable Stock Selection Algorithm for Quantitative Trading\",\"authors\":\"Zhengrui Li, Weiwei Lin, James Z. Wang, Peng Peng, Jianpeng Lin, Victor I. Chang, Jianghu Pan\",\"doi\":\"10.4018/ijghpc.301589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, machine learning models have exhibited remarkable performance in the fourth industrial revolution. However, especially in the field of stock forecasting, most of the existing models demonstrate either relatively weak interpretability or unsatisfactory performance. This paper proposes an interpretable stock selection algorithm(ISSA) to achieve accurate prediction results and high interpretability for stock selection. The excellent performance of ISSA lies in its integration of the learning to rank algorithm LambdaMART with the SHapley Additive exPlanations (SHAP) interpretation method. Performance evaluation over the Shanghai Stock Exchange A-share market shows that ISSA outperforms regression and classification models in stock selection performance. Our results also demonstrate that our proposed ISSA solution can effectively filter out the most impactful features, potentially used for investment strategy.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"23 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.301589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,机器学习模型在第四次工业革命中表现出色。然而,特别是在股票预测领域,大多数现有模型要么可解释性相对较弱,要么表现不理想。本文提出了一种可解释选股算法(ISSA),以实现准确的预测结果和高的选股可解释性。ISSA的优异性能在于将学习排序算法LambdaMART与SHapley加性解释(SHAP)解释方法相结合。对上海证券交易所a股市场的绩效评价表明,ISSA在选股绩效上优于回归模型和分类模型。我们的结果还表明,我们提出的ISSA解决方案可以有效地过滤出最具影响力的特征,可能用于投资策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Interpretable Stock Selection Algorithm for Quantitative Trading
In recent years, machine learning models have exhibited remarkable performance in the fourth industrial revolution. However, especially in the field of stock forecasting, most of the existing models demonstrate either relatively weak interpretability or unsatisfactory performance. This paper proposes an interpretable stock selection algorithm(ISSA) to achieve accurate prediction results and high interpretability for stock selection. The excellent performance of ISSA lies in its integration of the learning to rank algorithm LambdaMART with the SHapley Additive exPlanations (SHAP) interpretation method. Performance evaluation over the Shanghai Stock Exchange A-share market shows that ISSA outperforms regression and classification models in stock selection performance. Our results also demonstrate that our proposed ISSA solution can effectively filter out the most impactful features, potentially used for investment strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1