{"title":"水胁迫下,纳米沸石与商业氮磷钾对鼠尾草产量及其组成的影响比较","authors":"A. Mahmoud, H. Swaefy","doi":"10.2478/agri-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract The lucrative approach of nanotechnology and it´s utilizing in the agricultural sector is prospective. Based on this fact a field trial was done through 2018 and 2019 seasons to scrutinize the consequence of nano N, P and K elements application individual or in combination and nano zeolite loaded nitrogen or not on a sage plant grown under water stress compared to the commercial NPK fertilisers at new reclaimed land. Nano NPK elements were prepared from their precursor as potassium persulfate (K2S2O8), calcium phosphate (Ca (H2PO4)2·H2O) and salt NH4NO3, urea (CO (NH2)2), while nano zeolite was hydrothermally synthesized. Water stress was applied via drip irrigation with 15 days intervals. The data revealed that, nanofertilisers and nano-zeolites had a superior effects on the plant itself under stress conditions with concern on nano-zeolite loaded nitrogen and nano-NPK mixture as well which boosted vegetative growth (plant height, branches number, yield fresh weight, health index, herb fresh and dry weight, leaf area and oil yield), also improved photosynthetic rate, stomatal conductance, CO2 concentration, water use efficiency and relative water content. The chemical composition (plant pigments, total carbohydrates, total phenolic, tannin, total flavonoids, oil constituents, macro and micro-elements) with indigenous hormones (gibberellic acid GA3 and abscisic acid ABA) and antioxidant enzymes (peroxidase and superoxide dismutase) were also positively affected. The outcomes of current study emphasis global warning about chemical fertilisers pollution, particularly in new reclaimed areas and safety production of medicinal and aromatic plants.","PeriodicalId":7527,"journal":{"name":"Agriculture (Pol'nohospodárstvo)","volume":"34 1","pages":"24 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Comparison between Commercial and Nano NPK in Presence of Nano Zeolite on Sage Plant Yield and its Components under Water Stress\",\"authors\":\"A. Mahmoud, H. Swaefy\",\"doi\":\"10.2478/agri-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The lucrative approach of nanotechnology and it´s utilizing in the agricultural sector is prospective. Based on this fact a field trial was done through 2018 and 2019 seasons to scrutinize the consequence of nano N, P and K elements application individual or in combination and nano zeolite loaded nitrogen or not on a sage plant grown under water stress compared to the commercial NPK fertilisers at new reclaimed land. Nano NPK elements were prepared from their precursor as potassium persulfate (K2S2O8), calcium phosphate (Ca (H2PO4)2·H2O) and salt NH4NO3, urea (CO (NH2)2), while nano zeolite was hydrothermally synthesized. Water stress was applied via drip irrigation with 15 days intervals. The data revealed that, nanofertilisers and nano-zeolites had a superior effects on the plant itself under stress conditions with concern on nano-zeolite loaded nitrogen and nano-NPK mixture as well which boosted vegetative growth (plant height, branches number, yield fresh weight, health index, herb fresh and dry weight, leaf area and oil yield), also improved photosynthetic rate, stomatal conductance, CO2 concentration, water use efficiency and relative water content. The chemical composition (plant pigments, total carbohydrates, total phenolic, tannin, total flavonoids, oil constituents, macro and micro-elements) with indigenous hormones (gibberellic acid GA3 and abscisic acid ABA) and antioxidant enzymes (peroxidase and superoxide dismutase) were also positively affected. The outcomes of current study emphasis global warning about chemical fertilisers pollution, particularly in new reclaimed areas and safety production of medicinal and aromatic plants.\",\"PeriodicalId\":7527,\"journal\":{\"name\":\"Agriculture (Pol'nohospodárstvo)\",\"volume\":\"34 1\",\"pages\":\"24 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture (Pol'nohospodárstvo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/agri-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture (Pol'nohospodárstvo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/agri-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison between Commercial and Nano NPK in Presence of Nano Zeolite on Sage Plant Yield and its Components under Water Stress
Abstract The lucrative approach of nanotechnology and it´s utilizing in the agricultural sector is prospective. Based on this fact a field trial was done through 2018 and 2019 seasons to scrutinize the consequence of nano N, P and K elements application individual or in combination and nano zeolite loaded nitrogen or not on a sage plant grown under water stress compared to the commercial NPK fertilisers at new reclaimed land. Nano NPK elements were prepared from their precursor as potassium persulfate (K2S2O8), calcium phosphate (Ca (H2PO4)2·H2O) and salt NH4NO3, urea (CO (NH2)2), while nano zeolite was hydrothermally synthesized. Water stress was applied via drip irrigation with 15 days intervals. The data revealed that, nanofertilisers and nano-zeolites had a superior effects on the plant itself under stress conditions with concern on nano-zeolite loaded nitrogen and nano-NPK mixture as well which boosted vegetative growth (plant height, branches number, yield fresh weight, health index, herb fresh and dry weight, leaf area and oil yield), also improved photosynthetic rate, stomatal conductance, CO2 concentration, water use efficiency and relative water content. The chemical composition (plant pigments, total carbohydrates, total phenolic, tannin, total flavonoids, oil constituents, macro and micro-elements) with indigenous hormones (gibberellic acid GA3 and abscisic acid ABA) and antioxidant enzymes (peroxidase and superoxide dismutase) were also positively affected. The outcomes of current study emphasis global warning about chemical fertilisers pollution, particularly in new reclaimed areas and safety production of medicinal and aromatic plants.