新浪微博垃圾信息行为分析与识别

Chengfeng Lin, Jianhua He, Yi Zhou, Xiaokang Yang, Kai Chen, Li Song
{"title":"新浪微博垃圾信息行为分析与识别","authors":"Chengfeng Lin, Jianhua He, Yi Zhou, Xiaokang Yang, Kai Chen, Li Song","doi":"10.1145/2501025.2501035","DOIUrl":null,"url":null,"abstract":"Spamming has been a widespread problem for social networks. In recent years there is an increasing interest in the analysis of anti-spamming for microblogs, such as Twitter. In this paper we present a systematic research on the analysis of spamming in Sina Weibo platform, which is currently a dominant microblogging service provider in China. Our research objectives are to understand the specific spamming behaviors in Sina Weibo and find approaches to identify and block spammers in Sina Weibo based on spamming behavior classifiers. To start with the analysis of spamming behaviors we devise several effective methods to collect a large set of spammer samples, including uses of proactive honeypots and crawlers, keywords based searching and buying spammer samples directly from online merchants. We processed the database associated with these spammer samples and interestingly we found three representative spamming behaviors: aggressive advertising, repeated duplicate reposting and aggressive following. We extract various features and compare the behaviors of spammers and legitimate users with regard to these features. It is found that spamming behaviors and normal behaviors have distinct characteristics. Based on these findings we design an automatic online spammer identification system. Through tests with real data it is demonstrated that the system can effectively detect the spamming behaviors and identify spammers in Sina Weibo.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"1 1","pages":"5:1-5:9"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Analysis and identification of spamming behaviors in Sina Weibo microblog\",\"authors\":\"Chengfeng Lin, Jianhua He, Yi Zhou, Xiaokang Yang, Kai Chen, Li Song\",\"doi\":\"10.1145/2501025.2501035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spamming has been a widespread problem for social networks. In recent years there is an increasing interest in the analysis of anti-spamming for microblogs, such as Twitter. In this paper we present a systematic research on the analysis of spamming in Sina Weibo platform, which is currently a dominant microblogging service provider in China. Our research objectives are to understand the specific spamming behaviors in Sina Weibo and find approaches to identify and block spammers in Sina Weibo based on spamming behavior classifiers. To start with the analysis of spamming behaviors we devise several effective methods to collect a large set of spammer samples, including uses of proactive honeypots and crawlers, keywords based searching and buying spammer samples directly from online merchants. We processed the database associated with these spammer samples and interestingly we found three representative spamming behaviors: aggressive advertising, repeated duplicate reposting and aggressive following. We extract various features and compare the behaviors of spammers and legitimate users with regard to these features. It is found that spamming behaviors and normal behaviors have distinct characteristics. Based on these findings we design an automatic online spammer identification system. Through tests with real data it is demonstrated that the system can effectively detect the spamming behaviors and identify spammers in Sina Weibo.\",\"PeriodicalId\":74521,\"journal\":{\"name\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"volume\":\"1 1\",\"pages\":\"5:1-5:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2501025.2501035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

垃圾邮件一直是社交网络普遍存在的问题。近年来,人们对微博(如Twitter)的反垃圾邮件分析越来越感兴趣。在本文中,我们对新浪微博平台上的垃圾邮件进行了系统的研究分析,新浪微博是目前中国主要的微博服务提供商。我们的研究目标是了解新浪微博中的具体垃圾邮件行为,并找到基于垃圾邮件行为分类器识别和阻止新浪微博中垃圾邮件发送者的方法。为了分析垃圾邮件行为,我们设计了几种有效的方法来收集大量的垃圾邮件发送者样本,包括使用主动蜜罐和爬虫,基于关键字的搜索和直接从在线商家购买垃圾邮件发送者样本。我们处理了与这些垃圾邮件发送者样本相关的数据库,有趣的是,我们发现了三种典型的垃圾邮件行为:积极的广告、重复的转发和积极的关注。我们提取各种特征,并比较垃圾邮件发送者和合法用户在这些特征方面的行为。研究发现,垃圾邮件行为与正常行为具有明显的特点。基于这些发现,我们设计了一个在线垃圾邮件自动识别系统。通过真实数据的测试表明,该系统能够有效地检测新浪微博中的垃圾邮件行为,识别出垃圾邮件发送者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and identification of spamming behaviors in Sina Weibo microblog
Spamming has been a widespread problem for social networks. In recent years there is an increasing interest in the analysis of anti-spamming for microblogs, such as Twitter. In this paper we present a systematic research on the analysis of spamming in Sina Weibo platform, which is currently a dominant microblogging service provider in China. Our research objectives are to understand the specific spamming behaviors in Sina Weibo and find approaches to identify and block spammers in Sina Weibo based on spamming behavior classifiers. To start with the analysis of spamming behaviors we devise several effective methods to collect a large set of spammer samples, including uses of proactive honeypots and crawlers, keywords based searching and buying spammer samples directly from online merchants. We processed the database associated with these spammer samples and interestingly we found three representative spamming behaviors: aggressive advertising, repeated duplicate reposting and aggressive following. We extract various features and compare the behaviors of spammers and legitimate users with regard to these features. It is found that spamming behaviors and normal behaviors have distinct characteristics. Based on these findings we design an automatic online spammer identification system. Through tests with real data it is demonstrated that the system can effectively detect the spamming behaviors and identify spammers in Sina Weibo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1