{"title":"轨道交通牵引驱动技术的最新进展","authors":"Jien Ma, Chao-qun Luo, Lin Qiu, Xing Liu, Bowen Xu, Jiabo Shou, Youtong Fang","doi":"10.1631/jzus.A2200285","DOIUrl":null,"url":null,"abstract":"The traction drive system is the “heart” of rail transit vehicles. The development of sustainable, secure, economic, reliable, efficient, and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems. The interest in such systems is constantly growing, supported by advancements such as permanent magnet (PM) motors, advanced electronic devices such as those using silicon carbide (SiC), new-generation insulating materials such as organic silicon, and advanced magnetic materials such as rare-earth magnets and amorphous materials. Progress has also been made in control methods, manufacturing technology, artificial intelligence (AI), and other advanced technologies. In this paper, we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years. Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed. Finally, we describe some advanced traction drive technologies used in actual engineering applications. 牵引传动系统是轨道交通车辆的“心脏”。当代轨道交通绿色、安全、经济、可靠、高效、舒适的发展方向对牵引传动系统提出了日益苛刻的要求。永磁电机等先进电机、碳化硅等先进电子器件、有机硅等新一代绝缘材料、稀土永磁和非晶等先进磁材料和现代控制技术、先进制造技术、人工智能等高新技术的快速发展为新一代牵引传动系统提供了重要的条件支撑。本文简略回顾近年来轨道交通牵引传动技术的重要进展,并对下一代轨道交通牵引传动技术的发展方向及面临的主要挑战进行探讨。","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"29 1","pages":"177-188"},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent advances in traction drive technology for rail transit\",\"authors\":\"Jien Ma, Chao-qun Luo, Lin Qiu, Xing Liu, Bowen Xu, Jiabo Shou, Youtong Fang\",\"doi\":\"10.1631/jzus.A2200285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traction drive system is the “heart” of rail transit vehicles. The development of sustainable, secure, economic, reliable, efficient, and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems. The interest in such systems is constantly growing, supported by advancements such as permanent magnet (PM) motors, advanced electronic devices such as those using silicon carbide (SiC), new-generation insulating materials such as organic silicon, and advanced magnetic materials such as rare-earth magnets and amorphous materials. Progress has also been made in control methods, manufacturing technology, artificial intelligence (AI), and other advanced technologies. In this paper, we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years. Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed. Finally, we describe some advanced traction drive technologies used in actual engineering applications. 牵引传动系统是轨道交通车辆的“心脏”。当代轨道交通绿色、安全、经济、可靠、高效、舒适的发展方向对牵引传动系统提出了日益苛刻的要求。永磁电机等先进电机、碳化硅等先进电子器件、有机硅等新一代绝缘材料、稀土永磁和非晶等先进磁材料和现代控制技术、先进制造技术、人工智能等高新技术的快速发展为新一代牵引传动系统提供了重要的条件支撑。本文简略回顾近年来轨道交通牵引传动技术的重要进展,并对下一代轨道交通牵引传动技术的发展方向及面临的主要挑战进行探讨。\",\"PeriodicalId\":17508,\"journal\":{\"name\":\"Journal of Zhejiang University-SCIENCE A\",\"volume\":\"29 1\",\"pages\":\"177-188\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-SCIENCE A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.A2200285\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2200285","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances in traction drive technology for rail transit
The traction drive system is the “heart” of rail transit vehicles. The development of sustainable, secure, economic, reliable, efficient, and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems. The interest in such systems is constantly growing, supported by advancements such as permanent magnet (PM) motors, advanced electronic devices such as those using silicon carbide (SiC), new-generation insulating materials such as organic silicon, and advanced magnetic materials such as rare-earth magnets and amorphous materials. Progress has also been made in control methods, manufacturing technology, artificial intelligence (AI), and other advanced technologies. In this paper, we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years. Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed. Finally, we describe some advanced traction drive technologies used in actual engineering applications. 牵引传动系统是轨道交通车辆的“心脏”。当代轨道交通绿色、安全、经济、可靠、高效、舒适的发展方向对牵引传动系统提出了日益苛刻的要求。永磁电机等先进电机、碳化硅等先进电子器件、有机硅等新一代绝缘材料、稀土永磁和非晶等先进磁材料和现代控制技术、先进制造技术、人工智能等高新技术的快速发展为新一代牵引传动系统提供了重要的条件支撑。本文简略回顾近年来轨道交通牵引传动技术的重要进展,并对下一代轨道交通牵引传动技术的发展方向及面临的主要挑战进行探讨。
期刊介绍:
Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.