C. Wendel, Josefa Becerra Gonz'alez, A. Shukla, D. Paneque, K. Mannheim
{"title":"重组线辐射场中对级联的伽马射线特征","authors":"C. Wendel, Josefa Becerra Gonz'alez, A. Shukla, D. Paneque, K. Mannheim","doi":"10.22323/1.395.0911","DOIUrl":null,"url":null,"abstract":"Beams of ultra-relativistic electrons in blazar jets develop pair cascades interacting with ambient soft photons. Employing coupled kinetic equations with escape terms, we model the unsaturated pair cascade spectrum. We assume that the gamma rays predominantly scatter off recombinationline photons from clouds photoionised by the irradiation from the accretion disk and the jet. The cascade spectrum is rather insensitive to the injection of hard electron spectra associated with the short-time variability of blazars. Adopting physical parameters representative of Markarian 501 and 3C 279, respectively, we numerically obtain spectral energy distributions showing distinct features imprinted by the recombination-line photons. The hints for a peculiar feature at ∼ 3 TeV in the spectrum of Markarian 501, detected with the MAGIC telescopes during a strong X-ray flux activity in 2014 July, can be explained in this scenario as a result of the up-scattering of line photons by beam electrons and the low pair-creation optical depth. Inspecting a high-fidelity Fermi-LAT spectrum of 3C 279 from January 2018 reveals troughs in the spectrum that coincide with the threshold energies for gamma rays producing pairs in collisions with recombination-line photons, and the absence of exponential attenuation. Our finding implies that the gamma rays in 3C 279 escape from the edge of the broad emission line region.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gamma-ray signatures from pair cascades in recombination-line radiation fields\",\"authors\":\"C. Wendel, Josefa Becerra Gonz'alez, A. Shukla, D. Paneque, K. Mannheim\",\"doi\":\"10.22323/1.395.0911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beams of ultra-relativistic electrons in blazar jets develop pair cascades interacting with ambient soft photons. Employing coupled kinetic equations with escape terms, we model the unsaturated pair cascade spectrum. We assume that the gamma rays predominantly scatter off recombinationline photons from clouds photoionised by the irradiation from the accretion disk and the jet. The cascade spectrum is rather insensitive to the injection of hard electron spectra associated with the short-time variability of blazars. Adopting physical parameters representative of Markarian 501 and 3C 279, respectively, we numerically obtain spectral energy distributions showing distinct features imprinted by the recombination-line photons. The hints for a peculiar feature at ∼ 3 TeV in the spectrum of Markarian 501, detected with the MAGIC telescopes during a strong X-ray flux activity in 2014 July, can be explained in this scenario as a result of the up-scattering of line photons by beam electrons and the low pair-creation optical depth. Inspecting a high-fidelity Fermi-LAT spectrum of 3C 279 from January 2018 reveals troughs in the spectrum that coincide with the threshold energies for gamma rays producing pairs in collisions with recombination-line photons, and the absence of exponential attenuation. Our finding implies that the gamma rays in 3C 279 escape from the edge of the broad emission line region.\",\"PeriodicalId\":20473,\"journal\":{\"name\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.395.0911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gamma-ray signatures from pair cascades in recombination-line radiation fields
Beams of ultra-relativistic electrons in blazar jets develop pair cascades interacting with ambient soft photons. Employing coupled kinetic equations with escape terms, we model the unsaturated pair cascade spectrum. We assume that the gamma rays predominantly scatter off recombinationline photons from clouds photoionised by the irradiation from the accretion disk and the jet. The cascade spectrum is rather insensitive to the injection of hard electron spectra associated with the short-time variability of blazars. Adopting physical parameters representative of Markarian 501 and 3C 279, respectively, we numerically obtain spectral energy distributions showing distinct features imprinted by the recombination-line photons. The hints for a peculiar feature at ∼ 3 TeV in the spectrum of Markarian 501, detected with the MAGIC telescopes during a strong X-ray flux activity in 2014 July, can be explained in this scenario as a result of the up-scattering of line photons by beam electrons and the low pair-creation optical depth. Inspecting a high-fidelity Fermi-LAT spectrum of 3C 279 from January 2018 reveals troughs in the spectrum that coincide with the threshold energies for gamma rays producing pairs in collisions with recombination-line photons, and the absence of exponential attenuation. Our finding implies that the gamma rays in 3C 279 escape from the edge of the broad emission line region.