低磷发动机油的氧化和抗磨保持能力

Hong-liang Gao, K. Bjornen, A. Gangopadhyay, R. Jensen
{"title":"低磷发动机油的氧化和抗磨保持能力","authors":"Hong-liang Gao, K. Bjornen, A. Gangopadhyay, R. Jensen","doi":"10.4271/2005-01-3822","DOIUrl":null,"url":null,"abstract":"Future vehicle emission regulations both in the US and Europe will require maintaining catalyst efficiency for longer mileage intervals. In order to achieve this requirement, chemical restrictions are being placed on elements in engine oil that can poison catalysts. Most of phosphorus and a significant amount of sulfur in current engine oils come from zinc dialkyldithiophosphates, ZDDPs, which are a class of cost-effective multifunctional additives providing wear, oxidation and corrosion protection. Reducing ZDDP concentrations raises oxidation and wear concerns. The overall purpose of this research is to look at the antioxidation and antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus and the potential of engine oils formulated without phosphorus. In addition to fresh oils, used oils drained from fleet vehicles were also analyzed and evaluated. The results indicate that by appropriately selecting and balancing supplemental phosphorus-free antioxidation and antiwear additives the antioxidation capability can be improved for low phosphorus and even non-phosphorus oils, and the antiwear performance of low phosphorus oils could be maintained or even improved.","PeriodicalId":21404,"journal":{"name":"SAE transactions","volume":"85 3 1","pages":"1544-1550"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Oxidation and Antiwear Retention Capability of Low-Phosphorus Engine oils\",\"authors\":\"Hong-liang Gao, K. Bjornen, A. Gangopadhyay, R. Jensen\",\"doi\":\"10.4271/2005-01-3822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future vehicle emission regulations both in the US and Europe will require maintaining catalyst efficiency for longer mileage intervals. In order to achieve this requirement, chemical restrictions are being placed on elements in engine oil that can poison catalysts. Most of phosphorus and a significant amount of sulfur in current engine oils come from zinc dialkyldithiophosphates, ZDDPs, which are a class of cost-effective multifunctional additives providing wear, oxidation and corrosion protection. Reducing ZDDP concentrations raises oxidation and wear concerns. The overall purpose of this research is to look at the antioxidation and antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus and the potential of engine oils formulated without phosphorus. In addition to fresh oils, used oils drained from fleet vehicles were also analyzed and evaluated. The results indicate that by appropriately selecting and balancing supplemental phosphorus-free antioxidation and antiwear additives the antioxidation capability can be improved for low phosphorus and even non-phosphorus oils, and the antiwear performance of low phosphorus oils could be maintained or even improved.\",\"PeriodicalId\":21404,\"journal\":{\"name\":\"SAE transactions\",\"volume\":\"85 3 1\",\"pages\":\"1544-1550\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2005-01-3822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2005-01-3822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

未来美国和欧洲的汽车排放法规都将要求在更长的里程间隔内保持催化剂的效率。为了达到这一要求,对发动机油中可能毒害催化剂的元素进行了化学限制。目前发动机油中的大部分磷和大量硫来自二烷基二硫代磷酸锌(ZDDPs),这是一类具有成本效益的多功能添加剂,具有耐磨、氧化和防腐作用。降低ZDDP浓度会引起氧化和磨损问题。本研究的总体目的是观察含0.05 wt%磷的低磷发动机油的抗氧化和抗磨能力,以及不含磷的发动机油的潜力。除新鲜油品外,还对车队排出的废油进行了分析和评价。结果表明,通过合理选择和平衡添加无磷抗氧化和抗磨添加剂,可以提高低磷甚至无磷油品的抗氧化能力,保持甚至提高低磷油品的抗磨性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxidation and Antiwear Retention Capability of Low-Phosphorus Engine oils
Future vehicle emission regulations both in the US and Europe will require maintaining catalyst efficiency for longer mileage intervals. In order to achieve this requirement, chemical restrictions are being placed on elements in engine oil that can poison catalysts. Most of phosphorus and a significant amount of sulfur in current engine oils come from zinc dialkyldithiophosphates, ZDDPs, which are a class of cost-effective multifunctional additives providing wear, oxidation and corrosion protection. Reducing ZDDP concentrations raises oxidation and wear concerns. The overall purpose of this research is to look at the antioxidation and antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus and the potential of engine oils formulated without phosphorus. In addition to fresh oils, used oils drained from fleet vehicles were also analyzed and evaluated. The results indicate that by appropriately selecting and balancing supplemental phosphorus-free antioxidation and antiwear additives the antioxidation capability can be improved for low phosphorus and even non-phosphorus oils, and the antiwear performance of low phosphorus oils could be maintained or even improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing aeronautic electric propulsion performances by cogeneration and heat recovery Time and spatially resolved temperature measurements of a combusting diesel spray impinging on a wall Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling Drivers Involved in Crashes Killing Older Road Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1